Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J STEM Educ ; 5(1): 13, 2018.
Article in English | MEDLINE | ID: mdl-30631703

ABSTRACT

BACKGROUND: Interactive learning environments often provide help strategies to facilitate learning. Hints, for example, help students recall relevant concepts, identify mistakes, and make inferences. However, several studies have shown cases of ineffective help use. Findings from an initial study on the availability of hints in a mathematics problem-solving activity showed that early access to on-demand hints were linked to lack of performance improvements and longer completion times in students answering problems for summer work. The same experimental methodology was used in the present work with a different student sample population collected during the academic year to check for generalizability. RESULTS: Results from the academic year study showed that early access to on-demand-hints in an online mathematics assignment significantly improved student performance compared to students with later access to hints, which was not observed in the summer study. There were no differences in assignment completion time between conditions, which had been observed in the summer study and has been attributed to engagement in off-task activities. Although the summer and academic year studies were internally valid, there were significantly more students in the academic year study who did not complete their assignment. The sample populations differed significantly by student characteristics and external factors, possibly contributing to differences in the findings. Notable contextual factors that differed included prior knowledge, grade level, and assignment deadlines. CONCLUSIONS: Contextual differences influence hint effectiveness. This work found varying results when the same experimental methodology was conducted on two separate sample populations engaged in different learning settings. Further work is needed, however, to better understand how on-demand hints generalize to other learning contexts. Despite its limitations, the study shows how randomized controlled trials can be used to better understand the effectiveness of instructional designs applied in online learning systems that cater to thousands of learners across diverse student populations. We hope to encourage additional research that will validate the effectiveness of instructional designs in different learning contexts, paving the way for the development of robust and generalizable designs.

2.
Int J STEM Educ ; 5(1): 15, 2018.
Article in English | MEDLINE | ID: mdl-30631705

ABSTRACT

BACKGROUND: The Office of Naval Research (ONR) organized a STEM Challenge initiative to explore how intelligent tutoring systems (ITSs) can be developed in a reasonable amount of time to help students learn STEM topics. This competitive initiative sponsored four teams that separately developed systems that covered topics in mathematics, electronics, and dynamical systems. After the teams shared their progress at the conclusion of an 18-month period, the ONR decided to fund a joint applied project in the Navy that integrated those systems on the subject matter of electronic circuits. The University of Memphis took the lead in integrating these systems in an intelligent tutoring system called ElectronixTutor. This article describes the architecture of ElectronixTutor, the learning resources that feed into it, and the empirical findings that support the effectiveness of its constituent ITS learning resources. RESULTS: A fully integrated ElectronixTutor was developed that included several intelligent learning resources (AutoTutor, Dragoon, LearnForm, ASSISTments, BEETLE-II) as well as texts and videos. The architecture includes a student model that has (a) a common set of knowledge components on electronic circuits to which individual learning resources contribute and (b) a record of student performance on the knowledge components as well as a set of cognitive and non-cognitive attributes. There is a recommender system that uses the student model to guide the student on a small set of sensible next steps in their training. The individual components of ElectronixTutor have shown learning gains in previous decades of research. CONCLUSIONS: The ElectronixTutor system successfully combines multiple empirically based components into one system to teach a STEM topic (electronics) to students. A prototype of this intelligent tutoring system has been developed and is currently being tested. ElectronixTutor is unique in its assembling a group of well-tested intelligent tutoring systems into a single integrated learning environment.

SELECTION OF CITATIONS
SEARCH DETAIL
...