Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Ecol Evol ; 14(6): e11447, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38832142

ABSTRACT

Wildlife telemetry data may be used to answer a diverse range of questions relevant to wildlife ecology and management. One challenge to modeling telemetry data is that animal movement often varies greatly in pattern over time, and current continuous-time modeling approaches to handle such nonstationarity require bespoke and often complex models that may pose barriers to practitioner implementation. We demonstrate a novel application of treed Gaussian process (TGP) modeling, a Bayesian machine learning approach that automatically captures the nonstationarity and abrupt transitions present in animal movement. The machine learning formulation of TGPs enables modeling to be nearly automated, while their Bayesian formulation allows for the derivation of movement descriptors with associated uncertainty measures. We demonstrate the use of an existing R package to implement TGPs using the familiar Markov chain Monte Carlo algorithm. We then use estimated movement trajectories to derive movement descriptors that can be compared across individuals and populations. We applied the TGP model to a case study of lesser prairie-chickens (Tympanuchus pallidicinctus) to demonstrate the benefits of TGP modeling and compared distance traveled and residence times across lesser prairie-chicken individuals and populations. For broad usability, we outline all steps necessary for practitioners to specify relevant movement descriptors (e.g., turn angles, speed, contact points) and apply TGP modeling and trajectory comparison to their own telemetry datasets. Combining the predictive power of machine learning and the statistical inference of Bayesian methods to model movement trajectories allows for the estimation of statistically comparable movement descriptors from telemetry studies. Our use of an accessible R package allows practitioners to model trajectories and estimate movement descriptors, facilitating the use of telemetry data to answer applied management questions.

2.
Ecol Appl ; 34(3): e2954, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38379458

ABSTRACT

Animals must track resources over relatively fine spatial and temporal scales, particularly in disturbance-mediated systems like grasslands. Grassland birds respond to habitat heterogeneity by dispersing among sites within and between years, yet we know little about how they make post-dispersal settlement decisions. Many methods exist to quantify the resource selection of mobile taxa, but the habitat data used in these models are frequently not collected at the same location or time that individuals were present. This spatiotemporal misalignment may lead to incorrect interpretations and adverse conservation outcomes, particularly in dynamic systems. To investigate the extent to which spatially and temporally dynamic vegetation conditions and topography drive grassland bird settlement decisions, we integrated multiple data sources from our study site to predict slope, vegetation height, and multiple metrics of vegetation cover at any point in space and time within the temporal and spatial scope of our study. We paired these predictions with avian mark-resight data for 8 years at the Konza Prairie Biological Station in NE Kansas to evaluate territory selection for Grasshopper Sparrows (Ammodramus savannarum), Dickcissels (Spiza americana), and Eastern Meadowlarks (Sturnella magna). Each species selected different types and amounts of herbaceous vegetation cover, but all three species preferred relatively flat areas with less than 6% shrub cover and less than 1% tree cover. We evaluated several scenarios of woody vegetation removal and found that, with a targeted approach, the simulated removal of just one isolated tree in the uplands created up to 14 ha of grassland bird habitat. This study supports growing evidence that small amounts of woody encroachment can fragment landscapes, augmenting conservation threats to grassland systems. Conversely, these results demonstrate that drastic increases in bird habitat area could be achieved through relatively efficient management interventions. The results and approaches reported pave the way for more efficient conservation efforts in grasslands and other systems through spatiotemporal alignment of habitat with animal behaviors and simulated impacts of management interventions.


Subject(s)
Passeriformes , Songbirds , Humans , Animals , Grassland , Conservation of Natural Resources/methods , Ecosystem , Trees
3.
Front Plant Sci ; 14: 1223961, 2023.
Article in English | MEDLINE | ID: mdl-37600203

ABSTRACT

Introduction: While globally appreciated for reliable, intensification-friendly phenotypes, modern corn (Zea mays L.) genotypes retain crop plasticity potential. For example, weather and heterogeneous field conditions can overcome phenotype uniformity and facilitate tiller expression. Such plasticity may be of interest in restrictive or otherwise variable environments around the world, where corn production is steadily expanding. No substantial effort has been made in available literature to predict tiller development in field scenarios, which could provide insight on corn plasticity capabilities and drivers. Therefore, the objectives of this investigation are as follows: 1) identify environment, management, or combinations of these factors key to accurately predict tiller density dynamics in corn; and 2) test outof-season prediction accuracy for identified factors. Methods: Replicated field trials were conducted in 17 diverse site-years in Kansas (United States) during the 2019, 2020, and 2021 seasons. Two modern corn genotypes were evaluated with target plant densities of 25000, 42000, and 60000 plants ha -1. Environmental, phenological, and morphological data were recorded and evaluated with generalized additive models. Results: Plant density interactions with cumulative growing degree days, photothermal quotient, mean minimum and maximum daily temperatures, cumulative vapor pressure deficit, soil nitrate, and soil phosphorus were identified as important predictive factors of tiller density. Many of these factors had stark non-limiting thresholds. Factors impacting growth rates and photosynthesis (specifically vapor pressure deficit and maximum temperatures) were most sensitive to changes in plant density. Out-of-season prediction errors were seasonally variable, highlighting model limitations due to training datasets. Discussion: This study demonstrates that tillering is a predictable plasticity mechanism in corn, and therefore could be incorporated into decision tools for restrictive growing regions. While useful for diagnostics, these models are limited in forecast utility and should be coupled with appropriate decision theory and risk assessments for producers in climatically and socioeconomically vulnerable environments.

4.
Sci Rep ; 13(1): 8137, 2023 05 19.
Article in English | MEDLINE | ID: mdl-37208385

ABSTRACT

Rapid and targeted management actions are a prerequisite to efficiently mitigate disease outbreaks. Targeted actions, however, require accurate spatial information on disease occurrence and spread. Frequently, targeted management actions are guided by non-statistical approaches that define the affected area by a pre-determined distance surrounding a small number of disease detections. As an alternative, we present a long-recognized but underutilized Bayesian technique that uses limited local data and informative priors to make statistically valid predictions and forecasts about disease occurrence and spread. As a case study, we use limited local data that were available after the detection of chronic wasting disease in Michigan, U.S. along with information rich priors obtained from a previous study in a neighboring state. Using these limited local data and informative priors, we generate statistically valid predictions of disease occurrence and spread for the Michigan study area. This Bayesian technique is conceptually and computationally simple, relies on little to no local data, and is competitive with non-statistical distance-based metrics in all performance evaluations. Bayesian modeling has added benefits because it allows practitioners to generate immediate forecasts of future disease conditions and provides a principled framework to incorporate new data as they accumulate. We contend that the Bayesian technique offers broad-scale benefits and opportunities to make statistical inference across a diversity of data-deficient systems, not limited to disease.


Subject(s)
Wasting Disease, Chronic , Animals , Humans , Bayes Theorem , Michigan/epidemiology , Forecasting
5.
Ecology ; 103(2): e03563, 2022 02.
Article in English | MEDLINE | ID: mdl-34694631

ABSTRACT

Spatial models for occupancy data are used to estimate and map the true presence of a species, which may depend on biotic and abiotic factors as well as spatial autocorrelation. Traditionally researchers have accounted for spatial autocorrelation in occupancy data by using a correlated normally distributed site-level random effect, which might be incapable of modeling nontraditional spatial dependence such as discontinuities and abrupt transitions. Machine learning approaches have the potential to model nontraditional spatial dependence, but these approaches do not account for observer errors such as false absences. By combining the flexibility of Bayesian hierarchal modeling and machine learning approaches, we present a general framework to model occupancy data that accounts for both traditional and nontraditional spatial dependence as well as false absences. We demonstrate our framework using six synthetic occupancy data sets and two real data sets. Our results demonstrate how to model both traditional and nontraditional spatial dependence in occupancy data, which enables a broader class of spatial occupancy models that can be used to improve predictive accuracy and model adequacy.


Subject(s)
Machine Learning , Bayes Theorem , Spatial Analysis
6.
Transbound Emerg Dis ; 69(5): 2727-2734, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34914859

ABSTRACT

African swine fever virus (ASFV) is a global threat to swine production and sustainable pork supply. Without a commercially available vaccine, prevention of ASFV entry and spread is reliant on biosecurity and early detection of infection. Although ASFV ingestion in swill or feed by naïve pigs is a likely route of initial introduction, controlled experimental studies rarely utilize natural consumption as the infection route. In the current study, we utilized biological samples collected from pigs 5 days after natural consumption of ASFV in feed and liquid to assess diagnostic sensitivity for early detection of virus infection. Biological samples (serum, spleen, lymph nodes, tonsils, and faeces) were assessed for the presence of ASFV using quantitative PCR and virus isolation. Statistical methods modelled the detection sensitivity of each sample type with each diagnostic assay in individual samples. Our results provide important information that can be incorporated into ASFV surveillance programs.


Subject(s)
African Swine Fever Virus , African Swine Fever , Pork Meat , Swine Diseases , African Swine Fever Virus/genetics , Animals , Feces , Real-Time Polymerase Chain Reaction/veterinary , Swine
7.
Front Plant Sci ; 13: 1047268, 2022.
Article in English | MEDLINE | ID: mdl-36684726

ABSTRACT

Introduction: Crop plasticity is fundamental to sustainability discussions in production agriculture. Modern corn (Zea mays L.) genetics can compensate yield determinants to a small degree, but plasticity mechanisms have been masked by breeder selection and plant density management preferences. While tillers are a well-known source of plasticity in cereal crops, the functional trade-offs of tiller expression to the hierarchical yield formation process in corn are unknown. This investigation aimed to further dissect the consequences of tiller expression on corn yield component determination and plasticity in a range of environments from two plant fraction perspectives - i) main stalks only, considering potential functional trade-offs due to tiller expression; and ii) comprehensive (main stalk plus tillers). Methods: This multi-seasonal study considered a dataset of 17 site-years across Kansas, United States. Replicated field trials evaluated tiller presence (removed or intact) in two hybrids (P0657AM and P0805AM) at three target plant densities (25000, 42000, and 60000 plants ha-1). Record of ears and kernels per unit area and kernel weight were collected separately for both main stalks and tillers in each plot. Results: Indicated tiller contributions impacted the plasticity of yield components in evaluated genotypes. Ear number and kernel number per area were less dependent on plant density, but kernel number remained key to yield stability. Although ear number was less related to yield stability, ear source and type were significant yield predictors, with tiller axillary ears as stronger contributors than main stalk secondary ears in high-yielding environments. Discussions: Certainly, managing for the most main stalk primary ears possible - that is, optimizing the plant density (which consequently reduces tiller expression), is desirable to maximize yields. However, the demonstrated escape from the deterministic hierarchy of corn yield formation may offer avenues to reduce corn management dependence on a seasonally variable optimum plant density, which cannot be remediated mid-season.

8.
Plant Methods ; 17(1): 60, 2021 Jun 12.
Article in English | MEDLINE | ID: mdl-34118957

ABSTRACT

BACKGROUND: The fraction of intercepted photosynthetically active radiation (fPARi) is typically described with a non-linear function of leaf area index (LAI) and k, the light extinction coefficient. The parameter k is used to make statistical inference, as an input into crop models, and for phenotyping. It may be estimated using a variety of statistical techniques that differ in assumptions, which ultimately influences the numerical value k and associated uncertainty estimates. A systematic search of peer-reviewed publications for maize (Zea Mays L.) revealed: (i) incompleteness in reported estimation techniques; and (ii) that most studies relied on dated techniques with unrealistic assumptions, such as log-transformed linear models (LogTLM) or normally distributed data. These findings suggest that knowledge of the variety and trade-offs among statistical estimation techniques is lacking, which hinders the use of modern approaches such as Bayesian estimation (BE) and techniques with appropriate assumptions, e.g. assuming beta-distributed data. RESULTS: The parameter k was estimated for seven maize genotypes with five different methods: least squares estimation (LSE), LogTLM, maximum likelihood estimation (MLE) assuming normal distribution, MLE assuming beta distribution, and BE assuming beta distribution. Methods were compared according to the appropriateness for statistical inference, point estimates' properties, and predictive performance. LogTLM produced the worst predictions for fPARi, whereas both LSE and MLE with normal distribution yielded unrealistic predictions (i.e. fPARi < 0 or > 1) and the greatest coefficients for k. Models with beta-distributed fPARi (either MLE or Bayesian) were recommended to obtain point estimates. CONCLUSION: Each estimation technique has underlying assumptions which may yield different estimates of k and change inference, like the magnitude and rankings among genotypes. Thus, for reproducibility, researchers must fully report the statistical model, assumptions, and estimation technique. LogTLMs are most frequently implemented, but should be avoided to estimate k. Modeling fPARi with a beta distribution was an absent practice in the literature but is recommended, applying either MLE or BE. This workflow and technique comparison can be applied to other plant canopy models, such as the vertical distribution of nitrogen, carbohydrates, photosynthesis, etc. Users should select the method balancing benefits and tradeoffs matching the purpose of the study.

9.
Biometrics ; 76(2): 530-539, 2020 06.
Article in English | MEDLINE | ID: mdl-31517389

ABSTRACT

Binary regression models for spatial data are commonly used in disciplines such as epidemiology and ecology. Many spatially referenced binary data sets suffer from location error, which occurs when the recorded location of an observation differs from its true location. When location error occurs, values of the covariates associated with the true spatial locations of the observations cannot be obtained. We show how a change of support (COS) can be applied to regression models for binary data to provide coefficient estimates when the true values of the covariates are unavailable, but the unknown location of the observations are contained within nonoverlapping arbitrarily shaped polygons. The COS accommodates spatial and nonspatial covariates and preserves the convenient interpretation of methods such as logistic and probit regression. Using a simulation experiment, we compare binary regression models with a COS to naive approaches that ignore location error. We illustrate the flexibility of the COS by modeling individual-level disease risk in a population using a binary data set where the locations of the observations are unknown but contained within administrative units. Our simulation experiment and data illustration corroborate that conventional regression models for binary data that ignore location error are unreliable, but that the COS can be used to eliminate bias while preserving model choice.


Subject(s)
Data Interpretation, Statistical , Models, Statistical , Regression Analysis , Animals , Bias , Biometry , Computer Simulation , Deer , Female , Humans , Likelihood Functions , Logistic Models , Male , Poisson Distribution , Risk Factors , Wasting Disease, Chronic/epidemiology , Wisconsin/epidemiology
10.
Emerg Infect Dis ; 25(12): 2261-2263, 2019 12.
Article in English | MEDLINE | ID: mdl-31524583

ABSTRACT

African swine fever virus is transmissible through animal consumption of contaminated feed. To determine virus survival during transoceanic shipping, we calculated the half-life of the virus in 9 feed ingredients exposed to 30-day shipment conditions. Half-lives ranged from 9.6 to 14.2 days, indicating that the feed matrix environment promotes virus stability.


Subject(s)
African Swine Fever Virus , African Swine Fever/epidemiology , African Swine Fever/virology , Animal Feed/virology , African Swine Fever/transmission , Animals , Environment , Food Contamination , Swine
11.
Ecology ; 100(6): e02710, 2019 06.
Article in English | MEDLINE | ID: mdl-30927270

ABSTRACT

Understanding and accurately modeling species distributions lies at the heart of many problems in ecology, evolution, and conservation. Multiple sources of data are increasingly available for modeling species distributions, such as data from citizen science programs, atlases, museums, and planned surveys. Yet reliably combining data sources can be challenging because data sources can vary considerably in their design, gradients covered, and potential sampling biases. We review, synthesize, and illustrate recent developments in combining multiple sources of data for species distribution modeling. We identify five ways in which multiple sources of data are typically combined for modeling species distributions. These approaches vary in their ability to accommodate sampling design, bias, and uncertainty when quantifying environmental relationships in species distribution models. Many of the challenges for combining data are solved through the prudent use of integrated species distribution models: models that simultaneously combine different data sources on species locations to quantify environmental relationships for explaining species distribution. We illustrate these approaches using planned survey data on 24 species of birds coupled with opportunistically collected eBird data in the southeastern United States. This example illustrates some of the benefits of data integration, such as increased precision in environmental relationships, greater predictive accuracy, and accounting for sample bias. Yet it also illustrates challenges of combining data sources with vastly different sampling methodologies and amounts of data. We provide one solution to this challenge through the use of weighted joint likelihoods. Weighted joint likelihoods provide a means to emphasize data sources based on different criteria (e.g., sample size), and we find that weighting improves predictions for all species considered. We conclude by providing practical guidance on combining multiple sources of data for modeling species distributions.


Subject(s)
Birds , Ecology , Animals , Information Storage and Retrieval
12.
Emerg Infect Dis ; 25(5): 891-897, 2019 05.
Article in English | MEDLINE | ID: mdl-30761988

ABSTRACT

African swine fever virus (ASFV) is a contagious, rapidly spreading, transboundary animal disease and a major threat to pork production globally. Although plant-based feed has been identified as a potential route for virus introduction onto swine farms, little is known about the risks for ASFV transmission in feed. We aimed to determine the minimum and median infectious doses of the Georgia 2007 strain of ASFV through oral exposure during natural drinking and feeding behaviors. The minimum infectious dose of ASFV in liquid was 100 50% tissue culture infectious dose (TCID50), compared with 104 TCID50 in feed. The median infectious dose was 101.0 TCID50 for liquid and 106.8 TCID50 for feed. Our findings demonstrate that ASFV Georgia 2007 can easily be transmitted orally, although higher doses are required for infection in plant-based feed. These data provide important information that can be incorporated into risk models for ASFV transmission.


Subject(s)
African Swine Fever Virus , African Swine Fever/virology , Animal Feed/virology , African Swine Fever/epidemiology , African Swine Fever/transmission , African Swine Fever Virus/genetics , African Swine Fever Virus/pathogenicity , Animals , Food Microbiology , Georgia , Swine , Virulence
13.
Ecol Lett ; 20(5): 640-650, 2017 05.
Article in English | MEDLINE | ID: mdl-28371055

ABSTRACT

Ecological diffusion is a theory that can be used to understand and forecast spatio-temporal processes such as dispersal, invasion, and the spread of disease. Hierarchical Bayesian modelling provides a framework to make statistical inference and probabilistic forecasts, using mechanistic ecological models. To illustrate, we show how hierarchical Bayesian models of ecological diffusion can be implemented for large data sets that are distributed densely across space and time. The hierarchical Bayesian approach is used to understand and forecast the growth and geographic spread in the prevalence of chronic wasting disease in white-tailed deer (Odocoileus virginianus). We compare statistical inference and forecasts from our hierarchical Bayesian model to phenomenological regression-based methods that are commonly used to analyse spatial occurrence data. The mechanistic statistical model based on ecological diffusion led to important ecological insights, obviated a commonly ignored type of collinearity, and was the most accurate method for forecasting.


Subject(s)
Deer , Wasting Disease, Chronic/epidemiology , Animals , Bayes Theorem , Female , Forecasting , Male , Models, Theoretical , Prevalence , Wasting Disease, Chronic/etiology , Wisconsin/epidemiology
14.
Ecology ; 98(2): 328-336, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28052322

ABSTRACT

Ecological invasions and colonizations occur dynamically through space and time. Estimating the distribution and abundance of colonizing species is critical for efficient management or conservation. We describe a statistical framework for simultaneously estimating spatiotemporal occupancy and abundance dynamics of a colonizing species. Our method accounts for several issues that are common when modeling spatiotemporal ecological data including multiple levels of detection probability, multiple data sources, and computational limitations that occur when making fine-scale inference over a large spatiotemporal domain. We apply the model to estimate the colonization dynamics of sea otters (Enhydra lutris) in Glacier Bay, in southeastern Alaska.


Subject(s)
Models, Theoretical , Otters/physiology , Animals , Ecology , Ecosystem , Population Dynamics
15.
Ecology ; 98(3): 632-646, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27935640

ABSTRACT

Analyzing ecological data often requires modeling the autocorrelation created by spatial and temporal processes. Many seemingly disparate statistical methods used to account for autocorrelation can be expressed as regression models that include basis functions. Basis functions also enable ecologists to modify a wide range of existing ecological models in order to account for autocorrelation, which can improve inference and predictive accuracy. Furthermore, understanding the properties of basis functions is essential for evaluating the fit of spatial or time-series models, detecting a hidden form of collinearity, and analyzing large data sets. We present important concepts and properties related to basis functions and illustrate several tools and techniques ecologists can use when modeling autocorrelation in ecological data.


Subject(s)
Ecology , Models, Theoretical
16.
Ecol Lett ; 19(11): 1353-1362, 2016 11.
Article in English | MEDLINE | ID: mdl-27678091

ABSTRACT

Inferring the factors responsible for declines in abundance is a prerequisite to preventing the extinction of wild populations. Many of the policies and programmes intended to prevent extinctions operate on the assumption that the factors driving the decline of a population can be determined. Exogenous factors that cause declines in abundance can be statistically confounded with endogenous factors such as density dependence. To demonstrate the potential for confounding, we used an experiment where replicated populations were driven to extinction by gradually manipulating habitat quality. In many of the replicated populations, habitat quality and density dependence were confounded, which obscured causal inference. Our results show that confounding is likely to occur when the exogenous factors that are driving the decline change gradually over time. Our study has direct implications for wild populations, because many factors that could drive a population to extinction change gradually through time.


Subject(s)
Computer Simulation , Daphnia/physiology , Ecosystem , Models, Biological , Animals , Logistic Models , Population Dynamics , Time Factors
17.
Ecol Evol ; 5(18): 4197-209, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26445667

ABSTRACT

For many species, breeding population size is an important metric for assessing population status. A variety of simple methods are often used to estimate this metric for ground-nesting birds that nest in open habitats (e.g., beaches, riverine sandbars). The error and bias associated with estimates derived using these methods vary in relation to differing monitoring intensities and detection rates. However, these errors and biases are often difficult to obtain, poorly understood, and largely unreported. A method was developed to estimate the number of breeding pairs using counts of nests and broods from monitoring data where multiple surveys were made throughout a single breeding season (breeding pair estimator; BPE). The BPE method was compared to two commonly used estimation methods using simulated data from an individual-based model that allowed for the comparison of biases and accuracy. The BPE method underestimated the number of breeding pairs, but generally performed better than the other two commonly used methods when detection rates were low and monitoring frequency was high. As detection rates and time between surveys increased, the maximum nest and brood count method performs similar to the BPE. The BPE was compared to four commonly used methods to estimate breeding pairs for empirically derived data sets on the Platte River. Based on our simulated data, we expect our BPE to be closest to the true number of breeding pairs as compared to other methods. The methods tested resulted in substantially different estimates of the numbers of breeding pairs; however, coefficients from trend analyses were not statistically different. When data from multiple nest and brood surveys are available, the BPE appears to result in reasonably precise estimates of numbers of breeding pairs. Regardless of the estimation method, investigators are encouraged to acknowledge whether the method employed is likely to over- or underestimate breeding pairs. This study provides a means to recognize the potential biases in breeding pair estimates.

18.
Conserv Biol ; 29(5): 1337-46, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25926004

ABSTRACT

Predicting a species' distribution can be helpful for evaluating management actions such as critical habitat designations under the U.S. Endangered Species Act or habitat acquisition and rehabilitation. Whooping Cranes (Grus americana) are one of the rarest birds in the world, and conservation and management of habitat is required to ensure their survival. We developed a species distribution model (SDM) that could be used to inform habitat management actions for Whooping Cranes within the state of Nebraska (U.S.A.). We collated 407 opportunistic Whooping Crane group records reported from 1988 to 2012. Most records of Whooping Cranes were contributed by the public; therefore, developing an SDM that accounted for sampling bias was essential because observations at some migration stopover locations may be under represented. An auxiliary data set, required to explore the influence of sampling bias, was derived with expert elicitation. Using our SDM, we compared an intensively managed area in the Central Platte River Valley with the Niobrara National Scenic River in northern Nebraska. Our results suggest, during the peak of migration, Whooping Crane abundance was 262.2 (90% CI 40.2-3144.2) times higher per unit area in the Central Platte River Valley relative to the Niobrara National Scenic River. Although we compared only 2 areas, our model could be used to evaluate any region within the state of Nebraska. Furthermore, our expert-informed modeling approach could be applied to opportunistic presence-only data when sampling bias is a concern and expert knowledge is available.


Subject(s)
Animal Migration , Birds/physiology , Conservation of Natural Resources/methods , Ecosystem , Endangered Species , Animals , Models, Biological , Nebraska
19.
Ecol Evol ; 3(16): 5225-36, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24455151

ABSTRACT

Species distribution models (SDM) are tools used to determine environmental features that influence the geographic distribution of species' abundance and have been used to analyze presence-only records. Analysis of presence-only records may require correction for nondetection sampling bias to yield reliable conclusions. In addition, individuals of some species of animals may be highly aggregated and standard SDMs ignore environmental features that may influence aggregation behavior.We contend that nondetection sampling bias can be treated as missing data. Statistical theory and corrective methods are well developed for missing data, but have been ignored in the literature on SDMs. We developed a marked inhomogeneous Poisson point process model that accounted for nondetection and aggregation behavior in animals and tested our methods on simulated data.Correcting for nondetection sampling bias requires estimates of the probability of detection which must be obtained from auxiliary data, as presence-only data do not contain information about the detection mechanism. Weighted likelihood methods can be used to correct for nondetection if estimates of the probability of detection are available. We used an inhomogeneous Poisson point process model to model group abundance, a zero-truncated generalized linear model to model group size, and combined these two models to describe the distribution of abundance. Our methods performed well on simulated data when nondetection was accounted for and poorly when detection was ignored.We recommend researchers consider the effects of nondetection sampling bias when modeling species distributions using presence-only data. If information about the detection process is available, we recommend researchers explore the effects of nondetection and, when warranted, correct the bias using our methods. We developed our methods to analyze opportunistic presence-only records of whooping cranes (Grus americana), but expect that our methods will be useful to ecologists analyzing opportunistic presence-only records of other species of animals.

SELECTION OF CITATIONS
SEARCH DETAIL
...