Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Saudi Pharm J ; 31(12): 101866, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38033749

ABSTRACT

In this study, The inhibitory actions of human carbonic anhydrase (CA, EC 4.2.1.1) (hCA) isoforms I, II, IX, and XII are being examined using recently synthesized substituted hydroxyl Schiff derivatives based on the quinazoline scaffold 4-22. Quinazolines 2, 3, 4, 5, 7, 10, 15, and 18 reduce the activity of hCA I isoform effectively to a Ki of 87.6-692.3 nM, which is nearly equivalent to or more potent than that of the standard drug AAZ (Ki, 250.0 nM). Similarly, quinazolines 2, 3, and 5 and quinazoline 14 effectively decrease the inhibitory activity of the hCA II isoform to a KI of 16.9-29.7 nM, comparable to that of AAZ (Ki, 12.0 nM). The hCA IX isoform activity is substantially diminished by quinazolines 2-12 and 14-21 (Ki, 8.9-88.3 nM against AAZ (Ki, 25.0 nM). Further, the activity of the hCA XII isoform is markedly inhibited by the quinazolines 3, 5, 7, 14, and 16 (Ki, 5.4-19.5 nM). Significant selectivity levels are demonstrated for inhibiting tumour-associated isoforms hCA IX over hCAI, for sulfonamide derivatives 6-15 (SI; 10.68-186.29), and 17-22 (SI; 12.52-57.65) compared to AAZ (SI; 10.0). Sulfonamide derivatives 4-22 (SI; 0.50-20.77) demonstrated a unique selectivity in the concurrent inhibition of hCA IX over hCA II compared to AAZ (SI; 0.48). Simultaneously, benzenesulfonamide derivative 14 revealed excellent selectivity for inhibiting hCA XII over hCA I (SI; 60.35), whereas compounds 5-8, 12-14, 16, and 18-22 demonstrated remarkable selectivity for hCA XII inhibitory activity over hCA II (SI; 2.09-7.27) compared to AAZ (SI; 43.86 and 2.10, respectively). Molecular docking studies additionally support 8 to hCA IX and XII binding, thus indicating its potential as a lead compound for inhibitor development.

2.
Saudi Pharm J ; 31(9): 101693, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37559870

ABSTRACT

This study developed a novel, sensitive and selective LC-MS/MS method for the concurrent determination of DCB and VTX in rat plasma using encorafenib as internal standard (IS). To identify DCB, VTX, and IS, the positive multiple reaction monitoring (MRM) mode was used. Chromatographic separation was carried out using a reversed-phase Agilent Eclipse plus C18 column (100 mm × 2.1 mm, 3.5 µm) and an isocratic mobile phase made up of water with 0.1% formic acid and acetonitrile (50:50, v/v, pH 3.2) at a flow rate of 0.30 mL/min for 3.0 min. Prior to analysis, the DCB and VTX with the IS were extracted from plasma using the solid-phase extraction (SPE) method. High recovery rates for DCB, VTX and IS were achieved using the C18 cartridge without interference from plasma endogenous. The developed method was validated as per the FDA guidelines over a linear concentration range in rat plasma from 5-3000 and 5-1000 ng/mL for DCB and VTX, respectively with r2 ≥ 0.998. For both drugs, the lower limits of detection (LLOD) were 2.0 ng/mL. After the HLOQ sample was injected, less than 20% of the LLOQ of DCB, VTX, and less than 5% of the IS carry-over in the blank sample was attained. The overall recoveries of DCB and VTX from rat plasma were in the range of 90.68-97.56%, and the mean RSD of accuracy and precision results was ≤6.84%. For the first time, the newly developed approach was effectively used in a pharmacokinetic study on the simultaneous oral administration of DCB and VTX in rats that received 15.0 mg/kg of DCB and 100.0 mg/kg of VTX.

3.
Molecules ; 28(4)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36838539

ABSTRACT

LE300 is a novel dopamine receptor antagonist used to treat cocaine addiction. In the current study, a sensitive and fast liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been established and validated for the simultaneous analysis of LE300 and its N-methyl metabolite, MLE300, in rat plasma with an application in a pharmacokinetic study. The chromatographic elution of LE300, MLE300, and Ponatinib (IS, internal standard), was carried out on a 50 mm C18 analytical column (ID: 2.1 mm and particle size: 1.8 µm) maintained at 22 ± 2 °C. The run time was 5 min at a flow rate of 0.3 mL/min. The mobile phase consisted of 42% aqueous solvent (10 mM ammonium formate, pH: 4.2 with formic acid) and 58% organic solvent (acetonitrile). Plasma samples were pretreated using protein precipitation with acetonitrile. The electrospray ionization (ESI) source was used to generate an ion-utilizing positive mode. A multiple reaction monitoring mass analyzer mode was utilized for the quantification of analytes. The linearity of the calibration curves in rat plasma ranged from 1 to 200 ng/mL (r2 = 0.9997) and from 2 to 200 ng/mL (r2 = 0.9984) for LE300 and MLE300, respectively. The lower limits of detection (LLOD) were 0.3 ng/mL and 0.7 ng/mL in rat plasma for LE300 and MLE300, respectively. Accuracy (RE%) ranged from -1.71% to -0.07% and -4.18% to -1.48% (inter-day), and from -3.3% to -1.47% and -4.89% to -2.15% (intra-day) for LE300 and MLE300, respectively. The precision (RSD%) was less than 2.43% and 1.77% for the inter-day, and 2.77% and 1.73% for intra-day of LE300 and MLE300, respectively. These results are in agreement with FDA guidelines. The developed LC-MS/MS method was applied in a pharmacokinetic study in Wistar rats. Tmax and Cmax were 2 h and 151.12 ± 12.5 ng/mL for LE300, and 3 h and 170.4 ± 23.3 ng/mL for MLE300.


Subject(s)
Dopamine Antagonists , Tandem Mass Spectrometry , Rats , Animals , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Rats, Wistar , Reproducibility of Results
4.
Molecules ; 28(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36615272

ABSTRACT

The combination regimen targeting BRAF and MEK inhibition, for instance, encorafenib (Braftovi™, ENF) plus binimetinib (Mektovi®, BNB), are now recommended as first-line treatment in patients with unresectable or metastatic melanoma with a BRAF V600-activating mutation. Patients treated with combination therapy of ENF and BNB demonstrated a delay in resistance development, increases in antitumor activity, and attenuation of toxicities compared with the activity of either agent alone. However, the pharmacokinetic profile of the FDA-approved ENF and BNB is still unclear. In this study, a rapid and sensitive LC-MS/MS bioanalytical method for simultaneous quantification of ENF and BNB in rat plasma was developed and validated. Chromatography was performed on an Agilent Eclipse plus C18 column (50 mm × 2.1 mm, 1.8 µm), with an isocratic mobile phase composed of 0.1% formic acid in water/acetonitrile (67:33, v/v, pH 3.2) at a flow rate of 0.35 mL/min. A positive multiple reaction monitoring (MRM) mode was chosen for detection and the process of analysis was run for 2 min. Plasma samples were pre-treated using protein precipitation with acetonitrile containing spebrutinib as the internal standard (IS). Method validation was assessed as per the FDA guidelines for the determination of ENF and BNB over concentration ranges of 0.5-3000 ng/mL (r2 ≥ 0.997) for each drug (plasma). The lower limits of detection (LLOD) for both drugs were 0.2 ng/mL. The mean relative standard deviation (RSD) of the results for accuracy and precision was ≤ 7.52%, and the overall recoveries of ENF and BNB from rat plasma were in the range of 92.88-102.28%. The newly developed approach is the first LC-MS/MS bioanalytical method that can perform simultaneous quantification of ENF and BNB in rat plasma and its application to a pharmacokinetic study. The mean result for Cmax for BNB and ENF was found to be 3.43 ± 0.46 and 16.42 ± 1.47 µg/mL achieved at 1.0 h for both drugs, respectively. The AUC0-∞ for BNB and ENF was found to be 18.16 ± 1.31 and 36.52 ± 3.92 µg/mL.h, respectively. On the other hand, the elimination half-life (t1/2kel) parameters for BNB and ENF in the rat plasma were found to be 3.39 ± 0.43 h and 2.48 ± 0.24 h, and these results are consistent with previously reported values.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Benzimidazoles , Carbamates , Melanoma , Sulfonamides , Tandem Mass Spectrometry , Animals , Rats , Chromatography, Liquid/methods , Proto-Oncogene Proteins B-raf/metabolism , Reproducibility of Results , Tandem Mass Spectrometry/methods , Carbamates/blood , Carbamates/pharmacokinetics , Sulfonamides/blood , Sulfonamides/pharmacokinetics , Benzimidazoles/blood , Benzimidazoles/pharmacokinetics , Melanoma/drug therapy , Antineoplastic Combined Chemotherapy Protocols/blood , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics
5.
J Enzyme Inhib Med Chem ; 36(1): 1488-1499, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34227457

ABSTRACT

New cyanobenzofurans derivatives 2-12 were synthesised, and their antiproliferative activity was examined compared to doxorubicin and Afatinib (IC50 = 4.17-8.87 and 5.5-11.2 µM, respectively). Compounds 2 and 8 exhibited broad-spectrum activity against HePG2 (IC50 = 16.08-23.67 µM), HCT-116 (IC50 = 8.81-13.85 µM), and MCF-7 (IC50 = 8.36-17.28 µM) cell lines. Compounds 2, 3, 8, 10, and 11 were tested as EGFR-TK inhibitors to demonstrate their possible anti-tumour mechanism compared to gefitinib (IC50 = 0.90 µM). Compounds 2, 3, 10, and 11 displayed significant EGFR TK inhibitory activity with IC50 of 0.81-1.12 µM. Compounds 3 and 11 induced apoptosis at the Pre-G phase and cell cycle arrest at the G2/M phase. They also increased the level of caspase-3 by 5.7- and 7.3-fold, respectively. The molecular docking analysis of compounds 2, 3, 10, and 11 indicated that they could bind to the active site of EGFR TK.


Subject(s)
Antineoplastic Agents/pharmacology , Benzofurans/pharmacology , Drug Design , Nitriles/pharmacology , Protein Kinase Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Benzofurans/chemical synthesis , Benzofurans/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Humans , Models, Molecular , Molecular Structure , Nitriles/chemical synthesis , Nitriles/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship
6.
Molecules ; 26(7)2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33917412

ABSTRACT

A novel, fast and sensitive enantioselective HPLC assay with a new core-shell isopropyl carbamate cyclofructan 6 (superficially porous particle, SPP) chiral column (LarihcShell-P, LSP) was developed and validated for the enantiomeric separation and quantification of verapamil (VER) in rat plasma. The polar organic mobile phase composed of acetonitrile/methanol/trifluoroacetic acid/triethylamine (98:2:0.05: 0.025, v/v/v/v) and a flow rate of 0.5 mL/min was applied. Fluorescence detection set at excitation/emission wavelengths 280/313 nm was used and the whole analysis process was within 3.5 min, which is 10-fold lower than the previous reported HPLC methods in the literature. Propranolol was selected as the internal standard. The S-(-)- and R-(+)-VER enantiomers with the IS were extracted from rat plasma by utilizing Waters Oasis HLB C18 solid phase extraction cartridges without interference from endogenous compounds. The developed assay was validated following the US-FDA guidelines over the concentration range of 1-450 ng/mL (r2 ≥ 0.997) for each enantiomer (plasma) and the lower limit of quantification was 1 ng/mL for both isomers. The intra- and inter-day precisions were not more than 11.6% and the recoveries of S-(-)- and R-(+)-VER at all quality control levels ranged from 92.3% to 98.2%. The developed approach was successfully applied to the stereoselective pharmacokinetic study of VER enantiomers after oral administration of 10 mg/kg racemic VER to Wistar rats. It was found that S-(-)-VER established higher Cmax and area under the concentration-time curve (AUC) values than the R-(+)-enantiomer. The newly developed approach is the first chiral HPLC for the enantiomeric separation and quantification of verapamil utilizing a core-shell isopropyl carbamate cyclofructan 6 chiral column in rat plasma within 3.5 min after solid phase extraction (SPE).


Subject(s)
Biological Assay/methods , Verapamil/blood , Verapamil/pharmacokinetics , Administration, Oral , Animals , Chromatography, Liquid , Rats, Wistar , Reproducibility of Results , Stereoisomerism , Verapamil/chemistry , Verapamil/isolation & purification
7.
J Enzyme Inhib Med Chem ; 35(1): 598-609, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32009479

ABSTRACT

Inhibitory action of newly synthesised 4-(2-(2-substituted-thio-4-oxoquinazolin-3(4H)-yl)ethyl)benzenesulfonamides compounds 2-13 against human carbonic anhydrase (CA, EC 4.2.1.1) (hCA) isoforms I, II, IX, and XII, was evaluated. hCA I was efficiently inhibited by compounds 2-13 with inhibition constants (KIs) ranging from 57.8-740.2 nM. Compounds 2, 3, 4, and 12 showed inhibitory action against hCA II with KIs between 6.4 and 14.2 nM. CA IX exhibited significant sensitivity to inhibition by derivatives 2-13 with KI values ranging from 7.1 to 93.6 nM. Compounds 2, 3, 4, 8, 9, and 12 also exerted potent inhibitory action against hCA XII (KIs ranging from 3.1 to 20.2 nM). Molecular docking studies for the most potent compounds 2 and 3 were conducted to exhibit the binding mode towards hCA isoforms as a promising step for SAR analyses which showed similar interaction with co-crystallized ligands. As such, a subset of these mercaptoquinazolin-4(3H)-one compounds represented interesting leads for developing new efficient and selective carbonic anhydrase inhibitors (CAIs) for the management of a variety of diseases including glaucoma, epilepsy, arthritis and cancer.


Subject(s)
Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrases/metabolism , Quinazolines/pharmacology , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/chemistry , Dose-Response Relationship, Drug , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , Molecular Docking Simulation , Molecular Structure , Quinazolines/chemical synthesis , Quinazolines/chemistry , Structure-Activity Relationship
8.
Bioorg Chem ; 92: 103225, 2019 11.
Article in English | MEDLINE | ID: mdl-31493707

ABSTRACT

Herein, we report the synthesis, characterization, and carbonic anhydrase (CA) inhibition of the newly synthesized Schiff's bases 4-18 with benzenesulfonamide, methanesulfonamide, and methylsulfonylbenzene scaffolds. The compound inhibition profiles against human CA (hCA) isoforms I, II, IX, and XII were compared to those of the standard inhibitors, acetazolamide (AAZ) and SLC-0111 (a CA inhibitor in Phase II clinical trials for the treatment of hypoxic tumors). The hCA I was inhibited by compounds 4a-8a with inhibition constants (KI) in the range 93.5-428.1 nM (AAZ and SLC-0111: KI, 250.0 and 5080.0 nM, respectively). Compounds 4a-8a proved to be effective hCA II inhibitors, with KI ranging from 18.2 to 133.3 nM (AAZ and SLC-0111: KI, 12.0 and 960.0 nM, respectively). Compounds 4a-8a effectively inhibited hCA IX, with KI in the range 8.5-24.9 nM; these values are superior or equivalent to that of AAZ and SLC-0111 (KI, 25.0 and 45.0 nM, respectively). Compounds 4a-8a displayed effective hCA XII inhibitory activity with KI values ranging from 8.6 to 43.2 nM (AAZ and SLC-0111: KI, 5.7 and 4.5 nM, respectively). However, compounds 9b-13b and 14c-18c were found to be micromolar CA inhibitors. For molecular docking studies, compounds 5a, 6a, and 8a were selected.


Subject(s)
Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrases/chemistry , Schiff Bases/chemistry , Sulfonamides/chemistry , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrase Inhibitors/pharmacology , Hydrogen Bonding , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Benzenesulfonamides
9.
Eur J Med Chem ; 181: 111573, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31394463

ABSTRACT

The carbonic anhydrase (CA) inhibitory activity of newly synthesized compounds 4-21 against the human CA (hCA) isoforms I, II, IX, and XII was measured and compared to that of standard sulfonamide inhibitors, acetazolamide (AAZ) and SLC-0111. Among this series; benzensulfonamides 6-11 gave the best potent hCA inhibitors with inhibition constants (KIs) ranging from 81.9 to 456.6 nM (AAZ and SLC-0111: KIs, 250.0 and 5080 nM, respectively). Compounds 6-11 proved to be effective hCA II inhibitors (KIs, 8.9-51.5 nM); they were almost equally potent to AAZ (KI, 12.0 nM) and had superior potency to SLC-0111 (KI, 960.0 nM). For hCA IX inhibition, compounds 6-11 proved to be potent inhibitors, with KI values of 3.9-36.0 nM, which were greater than or equal to that of AAZ and greater than that of SLC-0111 (KIs, 25.0 and 45.0 nM, respectively). For hCA XII inhibitory activity, compounds 6-11 displayed effective inhibition with KI values ranging from 4.6 to 86.3 nM and were therefore comparable to AAZ and SLC-0111 (KIs, 5.7 and 4.5 nM, respectively). Molecular docking studies of compounds 6, 7, 10, and 11 were conducted using the crystal structures of hCA isozymes I, II, IX, and XII to study their binding interactions for further lead optimization.


Subject(s)
Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrase Inhibitors/pharmacology , Sulfonamides/chemistry , Sulfonamides/pharmacology , Benzene Derivatives/chemical synthesis , Benzene Derivatives/chemistry , Benzene Derivatives/pharmacology , Carbonic Anhydrase I/antagonists & inhibitors , Carbonic Anhydrase I/metabolism , Carbonic Anhydrase II/antagonists & inhibitors , Carbonic Anhydrase II/metabolism , Carbonic Anhydrase IX/antagonists & inhibitors , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrases/metabolism , Humans , Molecular Docking Simulation , Sulfonamides/chemical synthesis
10.
Bioorg Chem ; 87: 425-431, 2019 06.
Article in English | MEDLINE | ID: mdl-30921744

ABSTRACT

Carbonic anhydrases (CA, EC 4.2.1.1) are Zinc metalloenzymes and are present throughout most living organisms. Among the catalytically active isoforms are the cytosolic CA I and II, and tumor-associated CA IX and CA XII. The carbonic anhydrase (CA) inhibitory activities of newly synthesized pyrazoline-linked benzenesulfonamides 18-33 against human CA (hCA) isoforms I, II, IX, and XII were measured and compared with that of acetazolamide (AAZ), a standard inhibitor. Potent inhibitory activity against hCA I was exerted by compounds 18-25, with inhibition constant (KI) values of 87.8-244.1 nM, which were greater than that of AAZ (KI, 250.0 nM). Compounds 19, 21, 22, 29, 30, and 32 were proven to have inhibitory activities against hCA IX with KI values (5.5-37.0 nM) that were more effective than or nearly equal to that of AAZ (KI, 25.0 nM). Compounds 20-22, and 30 exerted potent inhibitory activities (KIs, 7.1-10.1 nM) against hCA XII, in comparison with AAZ (KI, 5.7 nM).


Subject(s)
Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrases/metabolism , Drug Design , Pyrazoles/pharmacology , Sulfonamides/pharmacology , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/chemistry , Dose-Response Relationship, Drug , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , Models, Molecular , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Structure-Activity Relationship , Sulfonamides/chemistry , Benzenesulfonamides
11.
Eur J Med Chem ; 124: 237-247, 2016 Nov 29.
Article in English | MEDLINE | ID: mdl-27597405

ABSTRACT

A new series of 6,7-dihydro-[1,3,4]thiadiazolo[3,2-a][1,3]diazepine analogues were synthesized, and biological evaluated. Compound GS-62 (33) exhibited potent in vivo short acting hypnotic activity with onset time, duration of sleep and therapeutic index of 6.4 ± 0.2, 94.8 ± 5.3 min, 6.62, respectively), in comparison to thiopental sodium (6). Compounds 33 did not show any sign of acute tolerance reported with the maintenance dose of 6. Meanwhile 33 potentiated the in vivo hypnotic effect of 6 in an equimolar amounts (0.06 mmol) combination showing an onset and duration of 7.5 ± 1.3, 62.5 ± 5.9 min, respectively. This combination allowed the use of lower doses of both drugs to avoid the undesirable side effects. Docking studies revealed favorable interactions and binding to BDZ binding site of the GABAA receptor especially with Arg87, Arg149, and Thr151 amino acid residues.


Subject(s)
Azepines/chemical synthesis , Azepines/pharmacology , Carboxylic Acids/chemical synthesis , Carboxylic Acids/pharmacology , Hypnotics and Sedatives/chemical synthesis , Hypnotics and Sedatives/pharmacology , Models, Molecular , Thiazoles/chemical synthesis , Thiazoles/pharmacology , Animals , Azepines/chemistry , Carboxylic Acids/chemistry , Chemistry Techniques, Synthetic , Hypnotics and Sedatives/chemistry , Male , Mice , Protein Conformation , Receptors, GABA-A/chemistry , Receptors, GABA-A/metabolism , Sleep/drug effects , Structure-Activity Relationship , Thiazoles/chemistry
12.
Bioorg Med Chem Lett ; 26(2): 445-453, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26706170

ABSTRACT

New derivatives of ethyl 8-oxo-5,6,7,8-tetrahydro-thiazolo[3,2-a][1,3]diazepin-3-carboxylate (HIE-124, 3), were synthesized as continuation to our previous patented efforts. Compounds 15 and 20 showed marginal hypnotic potency compared to 3. Compounds 15 (0.78mmol/kg) and 20 (0.39mmol/kg) showed remarkable 100% protection against PTZ induced convulsions with two and four fold increase in activity than sodium valproate (1.38mmol/kg), respectively. Molecular modeling studies showed hydrogen bonding interaction between 15 and Thr56 residues at the binding site of GABAA. Superposition, flexible alignment and surface mapping of 15, 20 and diazepam supports their biological resemblance where ADMET study suggested that those compounds could be used as oral anticonvulsants.


Subject(s)
Anticonvulsants/chemistry , Anticonvulsants/therapeutic use , Azepines/chemistry , Azepines/therapeutic use , Carboxylic Acids/chemistry , Carboxylic Acids/therapeutic use , Hypnotics and Sedatives/chemistry , Hypnotics and Sedatives/therapeutic use , Seizures/drug therapy , Thiazoles/chemistry , Thiazoles/therapeutic use , Animals , Anticonvulsants/pharmacokinetics , Anticonvulsants/pharmacology , Azepines/pharmacokinetics , Azepines/pharmacology , Carboxylic Acids/pharmacokinetics , Carboxylic Acids/pharmacology , GABA-A Receptor Agonists/chemistry , GABA-A Receptor Agonists/pharmacokinetics , GABA-A Receptor Agonists/pharmacology , GABA-A Receptor Agonists/therapeutic use , Hypnotics and Sedatives/pharmacokinetics , Hypnotics and Sedatives/pharmacology , Mice , Models, Molecular , Pentylenetetrazole , Receptors, GABA-A/metabolism , Seizures/chemically induced , Thiazoles/pharmacokinetics , Thiazoles/pharmacology
13.
Article in English | MEDLINE | ID: mdl-25817262

ABSTRACT

A highly selective, sensitive, and rapid microemulsion liquid chromatography (MELC) method was developed and validated for the simultaneous determination of a novel type of dopamine receptor antagonist LE300 and its N-methyl metabolite in mouse sera. LE300, its N-methyl metabolite, and pindolol (an internal standard) were detected using excitation and emission wavelengths of 275 and 340 nm, respectively. HPLC analysis by using a monolithic column was performed by directly injecting the sample after appropriate dilution with the microemulsion mobile phase. The chromatographic behaviour of these compounds was studied to demonstrate their chromatographic efficiency, retention, and peak symmetry. The MELC method was validated for its specificity, linearity, accuracy, precision, robustness and stability. An experimental design was used during validation to evaluate method robustness. The calibration curves in serum showed excellent linearity (r=0.997) over concentrations ranging from 10 to 400 ngmL(-1) for LE300 and 15 to 500 ngmL(-1) for its N-methyl metabolite. The mean relative standard deviation (RSD) of the results of inter- and intra-day precision and accuracy of LE300 and its N-methyl metabolite were ≤5%. The overall recoveries of LE300 and its N-methyl metabolite from mouse sera were in the range 97.9-101.5% with %RSD ranging from 0.98% to 3.63%, which were in line with ICH guidelines. The assay was successfully applied in a pharmacokinetic study.


Subject(s)
Chromatography, High Pressure Liquid/methods , Dopamine Antagonists/blood , Indoles/blood , Animals , Chromatography, High Pressure Liquid/instrumentation , Dopamine Antagonists/pharmacokinetics , Indoles/pharmacokinetics , Male , Mice , Silicon Dioxide/chemistry
14.
Acta Pharm ; 64(4): 433-46, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25531784

ABSTRACT

High performance liquid chromatography (HPLC) and second-order derivative spectrophotometry have been used for simultaneous determination of pravastatin (PS) and fenofibrate (FF) in pharmaceutical formulations. HPLC separation was performed on a phenyl HYPERSIL C18 column (125 mm × 4.6 mm i.d., 5 µm particle diameter) in the isocratic mode using a mobile phase acetonitrile/0.1 % diethyl amine (50:50, V/V, pH 4.5) pumped at a flow rate of 1.0 mL min-1. Measurement was made at 240 nm. Both drugs were well resolved on the stationary phase, with retention times of 2.15 and 5.79 min for PS and FF, respectively. Calibration curves were linear (R = 0.999 for PS and 0.996 for FF) in the concentration range of 5-50 and 20-200 µg mL-1 for PS and FF, respectively. Pravastatin and fenofibrate were quantitated in combined preparations also using the second-order derivative response at 237.6 and 295.1 nm for PS and FF, respectively. Calibration curves were linear, with the correlation coefficient R = 0.999 for pravastatin and fenofibrate, in the concentration range of 5-20 and 3-20 µg mL-1 for PS and FF, respectively. Both methods were fully validated and compared, the results confirmed that they were highly suitable for their intended purpose.


Subject(s)
Chromatography, High Pressure Liquid/methods , Fenofibrate/analysis , Pravastatin/analysis , Spectrophotometry, Ultraviolet/methods , Calibration , Drug Combinations , Fenofibrate/administration & dosage , Pravastatin/administration & dosage
15.
Chirality ; 26(4): 194-9, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24590758

ABSTRACT

A stereoselective high-performance liquid chromatographic (HPLC) method was developed and validated to determine S-(-)- and R-(+)-propranolol in rat serum. Enantiomeric resolution was achieved on cellulose tris(3,5-dimethylphenylcarbamate) immobilized onto spherical porous silica chiral stationary phase (CSP) known as Chiralpak IB. A simple analytical method was validated using a mobile phase consisted of n-hexane-ethanol-triethylamine (95:5:0.4%, v/v/v) at a flow rate of 0.6 mL min(-1) and fluorescence detection set at excitation/emission wavelengths 290/375 nm. The calibration curves were linear over the range of 10-400 ng mL(-1) (R = 0.999) for each enantiomer with a detection limit of 3 ng mL(-1). The proposed method was validated in compliance with ICH guidelines in terms of linearity, accuracy, precision, limits of detection and quantitation, and other aspects of analytical validation. Actual quantification could be made for propranolol isomers in serum obtained from rats that had been intraperitoneally (i.p.) administered a single dose of the drug. The proposed method established in this study is simple and sensitive enough to be adopted in the fields of clinical and forensic toxicology. Molecular modeling studies including energy minimization and docking studies were first performed to illustrate the mechanism by which the active enantiomer binds to the ß-adrenergic receptor and second to find a suitable interpretation of how both enantiomers are interacting with cellulose tris(3,5-dimethylphenylcarbamate) CSP during the process of resolution. The latter interaction was demonstrated by calculating the binding affinities and interaction distances between propranolol enantiomers and chiral selector.


Subject(s)
Chromatography, High Pressure Liquid/methods , Propranolol/blood , Propranolol/chemistry , Adrenergic beta-Antagonists/blood , Adrenergic beta-Antagonists/chemistry , Adrenergic beta-Antagonists/pharmacokinetics , Animals , Calibration , Chromatography, High Pressure Liquid/instrumentation , Fluorescence , Limit of Detection , Male , Models, Molecular , Propranolol/pharmacokinetics , Rats , Rats, Wistar , Receptors, Adrenergic, beta-2/chemistry , Receptors, Adrenergic, beta-2/metabolism , Reproducibility of Results , Stereoisomerism
16.
Acta Crystallogr Sect E Struct Rep Online ; 68(Pt 8): o2566, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22904994

ABSTRACT

In the title compound, C(19)H(15)N(4) (+)·Br(-)·C(2)H(5)OH, the tetra-zole ring makes dihedral angles of 57.44 (9), 50.92 (9) and 4.65 (8)° with the attached phenyl rings. In the crystal, the cation and the anion are linked to each other by inter-molecular C-H⋯Br hydrogen bonds into an infinite chain along the b axis. The anion and the ethanol solvent mol-ecule are linked by an O-H⋯Br hydrogen bond. The crystal studied was an inversion twin with a refined component ratio of 0.632 (5):0.368 (5).

17.
Acta Crystallogr Sect E Struct Rep Online ; 68(Pt 8): o2567, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22904995

ABSTRACT

In the title salt, C(19)H(15)N(4) (+)·C(24)H(20)B(-), the tetra-phenyl-borate anion is in a tetra-hedral geometry around the B atom [C-B-C angles of 107.10 (9)-111.79 (9)°]. In the cation, the tetra-zole ring makes dihedral angles of 3.04 (7), 51.75 (7) and 51.13 (7)° with the attached phenyl rings. In the crystal, C-H⋯π inter-actions link the cations and anions into ion pairs.

18.
Chem Cent J ; 6: 15, 2012 Feb 21.
Article in English | MEDLINE | ID: mdl-22353684

ABSTRACT

A validated simple, rapid, sensitive and specific square-wave voltammetric technique is described for the determination of acebutolol (AC) following its accumulation onto a hanging mercury drop electrode in a Britton-Robinson universal buffer of pH 7.5. The optimal procedural conditions were: accumulation potential Eacc = - 0.8 V versus Ag/AgCl/KCl, accumulation duration tacc = 30 s, pulse-amplitude = 70 mV, scan rate = 100 mV/s, frequency = 30 Hz, surface area of the working electrode = 0.6 mm2 and the convection rate = 2000 rpm. Under these optimized conditions, the adsorptive stripping voltammetry (AdSV) peak current was proportional over the concentration range 5 × 10-7 - 6 × 10-6 M (r = 0.999). Recoveries for acebutolol from human plasma and urine were in the range 97-103% and 96-104% respectively. The method proved to be precise (intra-day precision expressed as %RSD in human plasma ranged from 2.9 - 3.2% and inter-day precision expressed as %RSD ranged from 3.4 - 3.8%) and accurate (intra-day accuracies expressed as % error in human urine ranged from -3.3 - 2.8% and inter-day accuracies ranged from -3.3 - 1.7%). The limit of quantitation (LOQ) and limit of detection (LOD) for acebutolol were 1.7 × 10-7 and 5 × 10-7 M, respectively. Possible interferences by substances usually present in the pharmaceutical formulations were investigated with a mean recovery of 101.6 ± 0.64%. Results of the developed square-wave adsorptive stripping voltammetry (SW-AdSV) method were comparable with those obtained by reference analytical method.

19.
Drug Test Anal ; 4(1): 39-47, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21416633

ABSTRACT

Multiple response simultaneous optimization employing Derringer's desirability function was used for the development of a capillary electrophoresis method for the simultaneous determination of rosiglitazone (RSG) and glimepiride (GLM) in plasma and formulations. Twenty experiments, taking the two resolutions, the analysis time, and the capillary current as the responses with three important factors--buffer morality, volte and column temperature--were used to design mathematical models. The experimental responses were fitted into a second order polynomial and the six responses were simultaneously optimized to predict the optimum conditions for the effective separation of the studied compounds. The separation was carried out by using capillary zone electrophoresis (CZE) with a silica capillary column and diode array detector at 210 nm. The optimum assay conditions were 52 mmol l⁻¹ phosphate buffer, pH 7, and voltage of 22 kV at 29 °C. The method showed good agreement between the experimental data and predictive value throughout the studied parameter space. The assay limit of detection was 0.02 µg ml⁻¹ and the effective working range at relative standard deviation (RSD) of ≤ 5% was 0.05-16 µg ml⁻¹ (r = 0.999) for both drugs. Analytical recoveries of the studied drugs from spiked plasma were 97.2-101.9 ± 0.31-3.0%. The precision of the assay was satisfactory; RSD was 1.07 and 1.14 for intra- and inter-assay precision, respectively. The proposed method has a great value in routine analysis of RSG and GLM for its therapeutic monitoring and pharmacokinetic studies.


Subject(s)
Drug Monitoring/methods , Electrophoresis, Capillary , Hypoglycemic Agents/analysis , Sulfonylurea Compounds/analysis , Thiazolidinediones/analysis , Chemistry, Pharmaceutical , Drug Monitoring/standards , Electrophoresis, Capillary/standards , Humans , Hydrogen-Ion Concentration , Hypoglycemic Agents/blood , Limit of Detection , Models, Chemical , Models, Statistical , Observer Variation , Reproducibility of Results , Rosiglitazone , Sulfonylurea Compounds/blood , Tablets , Temperature , Thiazolidinediones/blood
20.
J Med Chem ; 54(20): 7422-6, 2011 Oct 27.
Article in English | MEDLINE | ID: mdl-21888437

ABSTRACT

Racemic and enantiopure 8-substituted derivatives of the lead dopamine receptor antagonist LE 300 (1) were prepared, and their affinities for the dopamine receptors (D(1)-D(5)) were tested. The separate enantiomers showed significantly different affinities; the (8S)-methyl and (8R)-hyroxymethyl derivatives where the substituents point below the reference plane of the indolo[3,2-f][3]benzazecine scaffold were markedly more active than their enantiomeric counterparts. The racemic 8-carboxy derivative was shown to be selective for the D(5)-receptor, even against D(1).


Subject(s)
Dopamine Antagonists/chemical synthesis , Heterocyclic Compounds, 4 or More Rings/chemical synthesis , Indoles/chemical synthesis , Animals , CHO Cells , Cricetinae , Cricetulus , Dopamine Antagonists/chemistry , Dopamine Antagonists/pharmacology , HEK293 Cells , Heterocyclic Compounds, 4 or More Rings/chemistry , Heterocyclic Compounds, 4 or More Rings/pharmacology , Humans , Indoles/chemistry , Indoles/pharmacology , Radioligand Assay , Stereoisomerism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...