Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Microbiol Methods ; 172: 105882, 2020 05.
Article in English | MEDLINE | ID: mdl-32119956

ABSTRACT

BACKGROUND: The cobas® omni Utility Channel enables users to integrate lab-developed tests (LDTs) on the cobas® 6800 System to perform molecular diagnostics with high-throughput capacity and full automation. At present, there are no CE- or FDA-approved tests for stool pathogens on this system. To assess the performance of stool as a matrix, we evaluated the analytical and clinical performance of an LDT for detection of Clostridioides difficile (C. difficile) toxin B using the Utility Channel (C.diff_UTC). METHODS: A 10% stool suspension prepared from liquid stool samples diluted in phosphate buffered saline was used for analysis. Limit of detection (LoD) was determined in six dilutions with 126 replicates/dilution. Clinical evaluation was performed using 514 predetermined patient stool samples from two study sites in Germany. The C.diff_UTC was compared with LC 480 amplification and an LDT or the R-BioPharm C. difficile assay. Discrepant results were further analyzed using the GeneXpert C. difficile assay. RESULTS: Limit of detection was 23.48 cfu/mL (95% Confidence Interval [CI]: 19.14-31.01) with inter-run variation of <2 cycle thresholds at 3 × and 10 × LoD. No cross-reactivity was observed with a panel of fecal organisms and pathogens. Bioinformatic analysis showed coverage of the major C. difficile toxinotypes by the primer/probe set. Clinical evaluation revealed sensitivity of 96.7% (95% CI: 88.7-99.6) and specificity of 99.3% (95% CI: 98.0-99.9) compared with the reference method; inhibition rate was 3.5% (18/514). CONCLUSION: Using a predesigned primer/probe set, the C.diff_UTC assay features analytical performance and clinical sensitivity and specificity comparable to currently available nucleic acid amplification tests (NAATs) and is suitable for high-throughput testing. This was a proof-of-concept study, indicating the cobas Utility Channel could likely be adapted for other clinically relevant stool pathogens in outbreak scenarios.


Subject(s)
Bacterial Proteins/isolation & purification , Bacterial Toxins/isolation & purification , Clostridioides difficile/genetics , Clostridioides difficile/isolation & purification , Clostridium Infections/diagnosis , Feces/chemistry , Reverse Transcriptase Polymerase Chain Reaction/methods , Bacterial Proteins/genetics , Bacterial Toxins/genetics , Clostridium Infections/microbiology , Germany , Humans , Nucleic Acid Amplification Techniques , Sensitivity and Specificity
2.
J Virol Methods ; 269: 49-54, 2019 07.
Article in English | MEDLINE | ID: mdl-30946852

ABSTRACT

BACKGROUND: Lower respiratory tract infections are a major threat to public health systems worldwide, with RSV and influenza being the main agents causing hospitalization. In outbreak situations, high-volume respiratory testing is needed. In this study, we evaluated the analytical and clinical performance of a pre-designed primer/probe set for the simultaneous multiplex detection of both viruses on a high-throughput platform, the cobas® 6800, using the "open channel" of the system for integration of lab-developed assays for the detection of influenza and RSV. RESULTS: Using the influenza/RSV qPCR Assay with swabs, LoD (95%) in TCID50/mL for influenza-A was 0.009, influenza-B 0.003, RSV-A 0.202, and RSV-B 0.009. Inter-run variability (3xLoD) was low (<1 Ct for all targets). Of 371 clinical respiratory specimens analyzed, results were concordant for 358 samples. The calculated sensitivity and specificity of the assay were 98.3% and 98.4% for Flu-A, 100% and 98.5% for Flu-B, and 98.6% and 99.7% for RSV. All quality assessment panel specimens (N = 63, including avian influenza strains) were correctly identified. None of the tested microorganisms showed cross-reactivity. CONCLUSION: Compared with CE-IVD assays, the assay evaluated here showed good analytical and clinical sensitivity and specificity with broad coverage of different virus strains. It offers high-throughput capacity with low hands-on time, facilitating the laboratory management of large respiratory outbreaks.


Subject(s)
High-Throughput Screening Assays/methods , Influenza A virus/isolation & purification , Influenza B virus/isolation & purification , Multiplex Polymerase Chain Reaction , Respiratory Syncytial Virus, Human/isolation & purification , Animals , Birds/virology , Humans , Influenza in Birds/virology , Influenza, Human/diagnosis , Influenza, Human/virology , Nasopharynx/virology , Respiratory Syncytial Virus Infections/diagnosis , Respiratory Syncytial Virus Infections/virology , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/virology , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...