Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
J Biol Chem ; 300(6): 107352, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723750

ABSTRACT

In Escherichia coli, the master transcription regulator catabolite repressor activator (Cra) regulates >100 genes in central metabolism. Cra binding to DNA is allosterically regulated by binding to fructose-1-phosphate (F-1-P), but the only documented source of F-1-P is from the concurrent import and phosphorylation of exogenous fructose. Thus, many have proposed that fructose-1,6-bisphosphate (F-1,6-BP) is also a physiological regulatory ligand. However, the role of F-1,6-BP has been widely debated. Here, we report that the E. coli enzyme fructose-1-kinase (FruK) can carry out its "reverse" reaction under physiological substrate concentrations to generate F-1-P from F-1,6-BP. We further show that FruK directly binds Cra with nanomolar affinity and forms higher order, heterocomplexes. Growth assays with a ΔfruK strain and fruK complementation show that FruK has a broader role in metabolism than fructose catabolism. Since fruK itself is repressed by Cra, these newly-reported events add layers to the dynamic regulation of E. coli's central metabolism that occur in response to changing nutrients. These findings might have wide-spread relevance to other γ-proteobacteria, which conserve both Cra and FruK.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/metabolism , Escherichia coli/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Fructokinases/metabolism , Fructokinases/genetics , Fructosediphosphates/metabolism , Fructose/metabolism , Gene Expression Regulation, Bacterial , Fructosephosphates/metabolism
2.
bioRxiv ; 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38168282

ABSTRACT

In Escherichia coli, the master transcription regulator Catabolite Repressor Activator (Cra) regulates >100 genes in central metabolism. Cra binding to DNA is allosterically regulated by binding to fructose-1-phosphate (F-1-P), but the only documented source of F-1-P is from the concurrent import and phosphorylation of exogenous fructose. Thus, many have proposed that fructose-1,6-bisphosphate (F-1,6-BP) is also a physiological regulatory ligand. However, the role of F-1,6-BP has been widely debated. Here, we report that the E. coli enzyme fructose-1-kinase (FruK) can carry out its "reverse" reaction under physiological substrate concentrations to generate F-1-P from F-1,6-BP. We further show that FruK directly binds Cra with nanomolar affinity and forms higher order, heterocomplexes. Growth assays with a ΔfruK strain and fruK complementation show that FruK has a broader role in metabolism than fructose catabolism. The ΔfruK strain also alters biofilm formation. Since fruK itself is repressed by Cra, these newly-reported events add layers to the dynamic regulation of E. coli central metabolism that occur in response to changing nutrients. These findings might have wide-spread relevance to other γ-proteobacteria, which conserve both Cra and FruK.

3.
J Microbiol Biol Educ ; 23(2)2022 Aug.
Article in English | MEDLINE | ID: mdl-36061320

ABSTRACT

During the COVID-19 pandemic, universities across the globe quickly shifted to online education. Laboratory courses faced unique challenges and were forced to reevaluate learning objectives and identify creative projects to engage students online. This study describes a newly developed online immunology laboratory curriculum focused on vaccine development. The course incorporated learning objectives to teach the scientific process, key experimental design components, and immunology techniques to evaluate vaccine efficacy. The curriculum, a course-based undergraduate research experience (CURE), asked students to engage in the research literature, propose a vaccine design and assessment, and interpret mock results. Instructor evaluation of student work as well as student self-evaluations demonstrated that students met the curriculum's learning objectives. Additionally, results from the laboratory course assessment survey (LCAS) indicate that this curriculum incorporated the CURE elements of collaboration, discovery and relevance, and iteration.

4.
Mol Microbiol ; 116(6): 1433-1448, 2021 12.
Article in English | MEDLINE | ID: mdl-34738268

ABSTRACT

Chlamydia muridarum actively grows in murine mucosae and is a representative model of human chlamydial genital tract disease. In contrast, C. trachomatis infections in mice are limited and rarely cause disease. The factors that contribute to these differences in host adaptation and specificity remain elusive. Overall genomic similarity leads to challenges in the understanding of these significant differences in tropism. A region of major genetic divergence termed the plasticity zone (PZ) has been hypothesized to contribute to the host specificity. To evaluate this hypothesis, lateral gene transfer was used to generate multiple hetero-genomic strains that are predominately C. trachomatis but have replaced regions of the PZ with those from C. muridarum. In vitro analysis of these chimeras revealed C. trachomatis-like growth as well as poor mouse infection capabilities. Growth-independent cytotoxicity phenotypes have been ascribed to three large putative cytotoxins (LCT) encoded in the C. muridarum PZ. However, analysis of PZ chimeras supported that gene products other than the LCTs are responsible for cytopathic and cytotoxic phenotypes. Growth analysis of associated chimeras also led to the discovery of an inclusion protein, CTL0402 (CT147), and homolog TC0424, which was critical for the integrity of the inclusion and preventing apoptosis.


Subject(s)
Chlamydia Infections/microbiology , Chlamydia muridarum/genetics , Chlamydia trachomatis/genetics , Gene Transfer, Horizontal , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chlamydia muridarum/metabolism , Chlamydia trachomatis/metabolism , Female , Genetic Variation , Humans , Mice, Inbred C57BL
5.
Genomics Proteomics Bioinformatics ; 19(6): 998-1011, 2021 12.
Article in English | MEDLINE | ID: mdl-33631427

ABSTRACT

The number of available protein sequences in public databases is increasing exponentially. However, a significant percentage of these sequences lack functional annotation, which is essential for the understanding of how biological systems operate. Here, we propose a novel method, Quantitative Annotation of Unknown STructure (QAUST), to infer protein functions, specifically Gene Ontology (GO) terms and Enzyme Commission (EC) numbers. QAUST uses three sources of information: structure information encoded by global and local structure similarity search, biological network information inferred by protein-protein interaction data, and sequence information extracted from functionally discriminative sequence motifs. These three pieces of information are combined by consensus averaging to make the final prediction. Our approach has been tested on 500 protein targets from the Critical Assessment of Functional Annotation (CAFA) benchmark set. The results show that our method provides accurate functional annotation and outperforms other prediction methods based on sequence similarity search or threading. We further demonstrate that a previously unknown function of human tripartite motif-containing 22 (TRIM22) protein predicted by QAUST can be experimentally validated.


Subject(s)
Proteins , Software , Computational Biology/methods , Databases, Protein , Humans , Proteins/chemistry , Proteins/genetics
6.
Pathog Dis ; 79(2)2021 03 10.
Article in English | MEDLINE | ID: mdl-32639528

ABSTRACT

Chlamydia suis, a ubiquitous swine pathogen, has the potential for zoonotic transmission to humans and often encodes for resistance to the primary treatment antibiotic, tetracycline. Because of this emerging threat, comparative genomics for swine isolate R19 with inter- and intra-species genomes was performed. A 1.094 Mb genome was determined through de novo assembly of Illumina high throughput sequencing reads. Annotation and subsystem analyses were conducted, revealing 986 putative genes (Chls_###) that are predominantly orthologs to other known Chlamydia genes. Subsequent comparative genomics revealed a high level of genomic synteny and overall sequence identity with other Chlamydia while 92 unique C. suis open reading frames were annotated. Direct comparison of Chlamydia-specific gene families that included the plasticity zone, inclusion membrane proteins, polymorphic membrane proteins and the major outer membrane protein, demonstrated high gene content identity with C. trachomatis and C. muridarum. These comparisons also identified diverse components that potentially could contribute to host-specificity. This study constitutes the first genome-wide comparative analysis for C. suis, generating a fully annotated reference genome. These studies will enable focused efforts on factors that provide key species specificity and adaptation to cognate hosts that are attributed to chlamydial infections, including humans.


Subject(s)
Chlamydia Infections/microbiology , Chlamydia muridarum/genetics , Chlamydia trachomatis/genetics , Chlamydia/genetics , Genome, Bacterial , Animals , Bacterial Proteins/genetics , Chlamydia Infections/veterinary , Genome-Wide Association Study , Genomics , High-Throughput Nucleotide Sequencing , Host Specificity , Membrane Proteins/genetics , Open Reading Frames , Phylogeny , Swine , Virulence Factors/genetics
7.
mBio ; 11(5)2020 09 08.
Article in English | MEDLINE | ID: mdl-32900805

ABSTRACT

Chlamydia bacteria are obligate intracellular organisms with a phylum-defining biphasic developmental cycle that is intrinsically linked to its ability to cause disease. The progression of the chlamydial developmental cycle is regulated by the temporal expression of genes predominantly controlled by RNA polymerase sigma (σ) factors. Sigma 54 (σ54) is one of three sigma factors encoded by Chlamydia for which the role and regulon are unknown. CtcC is part of a two-component signal transduction system that is requisite for σ54 transcriptional activation. CtcC activation of σ54 requires phosphorylation, which relieves inhibition by the CtcC regulatory domain and enables ATP hydrolysis by the ATPase domain. Prior studies with CtcC homologs in other organisms have shown that expression of the ATPase domain alone can activate σ54 transcription. Biochemical analysis of CtcC ATPase domain supported the idea of ATP hydrolysis occurring in the absence of the regulatory domain, as well as the presence of an active-site residue essential for ATPase activity (E242). Using recently developed genetic approaches in Chlamydia to induce expression of the CtcC ATPase domain, a transcriptional profile was determined that is expected to reflect the σ54 regulon. Computational evaluation revealed that the majority of the differentially expressed genes were preceded by highly conserved σ54 promoter elements. Reporter gene analyses using these putative σ54 promoters reinforced the accuracy of the model of the proposed regulon. Investigation of the gene products included in this regulon supports the idea that σ54 controls expression of genes that are critical for conversion of Chlamydia from replicative reticulate bodies into infectious elementary bodies.IMPORTANCE The factors that control the growth and infectious processes for Chlamydia are still poorly understood. This study used recently developed genetic tools to determine the regulon for one of the key transcription factors encoded by Chlamydia, sigma 54. Surrogate and computational analyses provide additional support for the hypothesis that sigma 54 plays a key role in controlling the expression of many components critical to converting and enabling the infectious capability of Chlamydia These components include those that remodel the membrane for the extracellular environment and incorporation of an arsenal of type III secretion effectors in preparation for infecting new cells.


Subject(s)
Bacterial Outer Membrane/metabolism , Chlamydia trachomatis/genetics , Gene Expression Regulation, Bacterial , RNA Polymerase Sigma 54/genetics , Regulon , Transcription, Genetic , Type III Secretion Systems/genetics , Animals , Cell Line , Chlamydia trachomatis/pathogenicity , Cytoplasm/metabolism , Fibroblasts/microbiology , Mice , Promoter Regions, Genetic , Transcriptional Activation
8.
Mol Microbiol ; 113(1): 68-88, 2020 01.
Article in English | MEDLINE | ID: mdl-31637787

ABSTRACT

Chlamydia trachomatis is an obligate intracellular bacteria that undergo dynamic morphologic and physiologic conversions upon gaining an access to a eukaryotic cell. These conversions likely require the detection of key environmental conditions and regulation of metabolic activity. Chlamydia encodes homologs to proteins in the Rsb phosphoregulatory partner-switching pathway, best described in Bacillus subtilis. ORF CT588 has a strong sequence similarity to RsbU cytoplasmic phosphatase domain but also contains a unique periplasmic sensor domain that is expected to control the phosphatase activity. A 1.7 Å crystal structure of the periplasmic domain of the RsbU protein from C. trachomatis (PDB 6MAB) displays close structural similarity to DctB from Vibrio and Sinorhizobium. DctB has been shown, both structurally and functionally, to specifically bind to the tricarboxylic acid (TCA) cycle intermediate succinate. Surface plasmon resonance and differential scanning fluorimetry of TCA intermediates and potential metabolites from a virtual screen of RsbU revealed that alpha-ketoglutarate, malate and oxaloacetate bound to the RsbU periplasmic domain. Substitutions in the putative binding site resulted in reduced binding capabilities. An RsbU null mutant showed severe growth defects which could be restored through genetic complementation. Chemical inhibition of ATP synthesis by oxidative phosphorylation phenocopied the growth defect observed in the RsbU null strain. Altogether, these data support a model with the Rsb system responding differentially to TCA cycle intermediates to regulate metabolism and key differentiation processes.


Subject(s)
Bacterial Proteins/chemistry , Chlamydia trachomatis/metabolism , Citric Acid Cycle , Phosphoric Monoester Hydrolases/chemistry , Bacterial Proteins/metabolism , Phosphoric Monoester Hydrolases/metabolism , Protein Domains
9.
J Bacteriol ; 201(23)2019 12 01.
Article in English | MEDLINE | ID: mdl-31501283

ABSTRACT

Functional genetic analysis of Chlamydia has been a challenge due to the historical genetic intractability of Chlamydia, although recent advances in chlamydial genetic manipulation have begun to remove these barriers. Here, we report the development of the Himar C9 transposon system for Chlamydia muridarum, a mouse-adapted Chlamydia species that is widely used in Chlamydia infection models. We demonstrate the generation and characterization of an initial library of 33 chloramphenicol (Cam)-resistant, green fluorescent protein (GFP)-expressing C. muridarum transposon mutants. The majority of the mutants contained single transposon insertions spread throughout the C. muridarum chromosome. In all, the library contained 31 transposon insertions in coding open reading frames (ORFs) and 7 insertions in intergenic regions. Whole-genome sequencing analysis of 17 mutant clones confirmed the chromosomal locations of the insertions. Four mutants with transposon insertions in glgB, pmpI, pmpA, and pmpD were investigated further for in vitro and in vivo phenotypes, including growth, inclusion morphology, and attachment to host cells. The glgB mutant was shown to be incapable of complete glycogen biosynthesis and accumulation in the lumen of mutant inclusions. Of the 3 pmp mutants, pmpI was shown to have the most pronounced growth attenuation defect. This initial library demonstrates the utility and efficacy of stable, isogenic transposon mutants for C. muridarum The generation of a complete library of C. muridarum mutants will ultimately enable comprehensive identification of the functional genetic requirements for Chlamydia infection in vivoIMPORTANCE Historical issues with genetic manipulation of Chlamydia have prevented rigorous functional genetic characterization of the ∼1,000 genes in chlamydial genomes. Here, we report the development of a transposon mutagenesis system for C. muridarum, a mouse-adapted Chlamydia species that is widely used for in vivo investigations of chlamydial pathogenesis. This advance builds on the pioneering development of this system for C. trachomatis We demonstrate the generation of an initial library of 33 mutants containing stable single or double transposon insertions. Using these mutant clones, we characterized in vitro phenotypes associated with genetic disruptions in glycogen biosynthesis and three polymorphic outer membrane proteins.


Subject(s)
Bacterial Proteins/genetics , Chlamydia muridarum/genetics , Chromosomes, Bacterial/chemistry , DNA Transposable Elements , Mutagenesis , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Base Sequence , Chlamydia Infections/microbiology , Chlamydia muridarum/drug effects , Chlamydia muridarum/metabolism , Chloramphenicol/pharmacology , Chromosomes, Bacterial/metabolism , Clone Cells , Gene Library , Mice , Mutation , Open Reading Frames , Plasmids/chemistry , Plasmids/metabolism , Whole Genome Sequencing
10.
J Bacteriol ; 201(23)2019 12 01.
Article in English | MEDLINE | ID: mdl-31501285

ABSTRACT

Lateral gene transfer (LGT) among Chlamydia trachomatis strains is common, in both isolates generated in the laboratory and those examined directly from patients. In contrast, there are very few examples of recent acquisition of DNA by any Chlamydia spp. from any other species. Interspecies LGT in this system was analyzed using crosses of tetracycline (Tc)-resistant C. trachomatis L2/434 and chloramphenicol (Cam)-resistant C. muridarum VR-123. Parental C. muridarum strains were created using a plasmid-based Himar transposition system, which led to integration of the Camr marker randomly across the chromosome. Fragments encompassing 79% of the C. muridarum chromosome were introduced into a C. trachomatis background, with the total coverage contained on 142 independent recombinant clones. Genome sequence analysis of progeny strains identified candidate recombination hot spots, a property not consistent with in vitroC. trachomatis × C. trachomatis (intraspecies) crosses. In both interspecies and intraspecies crosses, there were examples of duplications, mosaic recombination endpoints, and recombined sequences that were not linked to the selection marker. Quantitative analysis of the distribution and constitution of inserted sequences indicated that there are different constraints on interspecies LGT than on intraspecies crosses. These constraints may help explain why there is so little evidence of interspecies genetic exchange in this system, which is in contrast to very widespread intraspecies exchange in C. trachomatisIMPORTANCE Genome sequence analysis has demonstrated that there is widespread lateral gene transfer among strains within the species C. trachomatis and with other closely related Chlamydia species in laboratory experiments. This is in contrast to the complete absence of foreign DNA in the genomes of sequenced clinical C. trachomatis strains. There is no understanding of any mechanisms of genetic transfer in this important group of pathogens. In this report, we demonstrate that interspecies genetic exchange can occur but that the nature of the fragments exchanged is different than those observed in intraspecies crosses. We also generated a large hybrid strain library that can be exploited to examine important aspects of chlamydial disease.


Subject(s)
Chlamydia muridarum/genetics , Chlamydia trachomatis/genetics , Chromosomes, Bacterial/chemistry , Gene Expression Regulation, Bacterial , Gene Transfer, Horizontal , Recombination, Genetic , Anti-Bacterial Agents/pharmacology , Base Sequence , Chlamydia muridarum/drug effects , Chlamydia muridarum/metabolism , Chlamydia trachomatis/drug effects , Chlamydia trachomatis/metabolism , Chromosomes, Bacterial/metabolism , Crosses, Genetic , DNA Transposable Elements , Plasmids/chemistry , Plasmids/metabolism , Tetracycline/pharmacology , Tetracycline Resistance/genetics
11.
mBio ; 10(4)2019 08 06.
Article in English | MEDLINE | ID: mdl-31387908

ABSTRACT

Transposon mutagenesis is a widely applied and powerful genetic tool for the discovery of genes associated with selected phenotypes. Chlamydia trachomatis is a clinically significant, obligate intracellular bacterium for which many conventional genetic tools and capabilities have been developed only recently. This report describes the successful development and application of a Himar transposon mutagenesis system for generating single-insertion mutant clones of C. trachomatis This system was used to generate a pool of 105 transposon mutant clones that included insertions in genes encoding flavin adenine dinucleotide (FAD)-dependent monooxygenase (C. trachomatis148 [ct148]), deubiquitinase (ct868), and competence-associated (ct339) proteins. A subset of Tn mutant clones was evaluated for growth differences under cell culture conditions, revealing that most phenocopied the parental strain; however, some strains displayed subtle and yet significant differences in infectious progeny production and inclusion sizes. Bacterial burden studies in mice also supported the idea that a FAD-dependent monooxygenase (ct148) and a deubiquitinase (ct868) were important for these infections. The ct339 gene encodes a hypothetical protein with limited sequence similarity to the DNA-uptake protein ComEC. A transposon insertion in ct339 rendered the mutant incapable of DNA acquisition during recombination experiments. This observation, along with in situ structural analysis, supports the idea that this protein is playing a role in the fundamental process of lateral gene transfer similar to that of ComEC. In all, the development of the Himar transposon system for Chlamydia provides an effective genetic tool for further discovery of genes that are important for basic biology and pathogenesis aspects.IMPORTANCEChlamydia trachomatis infections have an immense impact on public health; however, understanding the basic biology and pathogenesis of this organism has been stalled by the limited repertoire of genetic tools. This report describes the successful adaptation of an important tool that has been lacking in Chlamydia studies: transposon mutagenesis. This advance enabled the generation of 105 insertional mutants, demonstrating that numerous gene products are not essential for in vitro growth. Mammalian infections using these mutants revealed that several gene products are important for infections in vivo Moreover, this tool enabled the investigation and discovery of a gene critical for lateral gene transfer; a process fundamental to the evolution of bacteria and likely for Chlamydia as well. The development of transposon mutagenesis for Chlamydia has broad impact for the field and for the discovery of genes associated with selected phenotypes, providing an additional avenue for the discovery of molecular mechanisms used for pathogenesis and for a more thorough understanding of this important pathogen.


Subject(s)
Bacterial Proteins/metabolism , Chlamydia Infections/microbiology , Chlamydia trachomatis/genetics , Chlamydia trachomatis/metabolism , DNA, Bacterial/genetics , Gene Transfer, Horizontal , Animals , Bacterial Proteins/genetics , DNA Transposable Elements , DNA, Bacterial/metabolism , Female , Humans , Mice , Mice, Inbred C57BL , Mutagenesis, Insertional , Mutation
12.
Article in English | MEDLINE | ID: mdl-29868501

ABSTRACT

Invasion of epithelial cells by the obligate intracellular bacterium Chlamydia trachomatis results in its enclosure inside a membrane-bound compartment termed an inclusion. The bacterium quickly begins manipulating interactions between host intracellular trafficking and the inclusion interface, diverging from the endocytic pathway and escaping lysosomal fusion. We have identified a previously uncharacterized protein, CT622, unique to the Chlamydiaceae, in the absence of which most bacteria failed to establish a successful infection. CT622 is abundant in the infectious form of the bacteria, in which it associates with CT635, a putative novel chaperone protein. We show that CT622 is translocated into the host cytoplasm via type three secretion throughout the developmental cycle of the bacteria. Two separate domains of roughly equal size have been identified within CT622 and a 1.9 Å crystal structure of the C-terminal domain has been determined. Genetic disruption of ct622 expression resulted in a strong bacterial growth defect, which was due to deficiencies in proliferation and in the generation of infectious bacteria. Our results converge to identify CT622 as a secreted protein that plays multiple and crucial roles in the initiation and support of the C. trachomatis growth cycle. They reveal that genetic disruption of a single effector can deeply affect bacterial fitness.


Subject(s)
Antigens, Bacterial/metabolism , Bacterial Proteins/metabolism , Chlamydia Infections/microbiology , Chlamydia trachomatis/growth & development , Chlamydia trachomatis/metabolism , Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Cell Proliferation , Chlamydia trachomatis/genetics , Cloning, Molecular , Cytoplasm/chemistry , Cytoplasm/microbiology , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Genes, Bacterial/genetics , HeLa Cells , Host-Pathogen Interactions , Humans , Models, Molecular , Protein Conformation , Secretory Pathway , Sequence Alignment , Type III Secretion Systems
13.
Elife ; 62017 03 28.
Article in English | MEDLINE | ID: mdl-28347402

ABSTRACT

Obligate intracellular Chlamydia trachomatis replicate in a membrane-bound vacuole called inclusion, which serves as a signaling interface with the host cell. Here, we show that the chlamydial deubiquitinating enzyme (Cdu) 1 localizes in the inclusion membrane and faces the cytosol with the active deubiquitinating enzyme domain. The structure of this domain revealed high similarity to mammalian deubiquitinases with a unique α-helix close to the substrate-binding pocket. We identified the apoptosis regulator Mcl-1 as a target that interacts with Cdu1 and is stabilized by deubiquitination at the chlamydial inclusion. A chlamydial transposon insertion mutant in the Cdu1-encoding gene exhibited increased Mcl-1 and inclusion ubiquitination and reduced Mcl-1 stabilization. Additionally, inactivation of Cdu1 led to increased sensitivity of C. trachomatis for IFNγ and impaired infection in mice. Thus, the chlamydial inclusion serves as an enriched site for a deubiquitinating activity exerting a function in selective stabilization of host proteins and protection from host defense.


Subject(s)
Bacterial Proteins/metabolism , Chlamydia trachomatis/immunology , Chlamydia trachomatis/physiology , Deubiquitinating Enzymes/metabolism , Immune Evasion , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Vacuoles/microbiology , HEK293 Cells , HeLa Cells , Host-Pathogen Interactions , Humans , Protein Processing, Post-Translational
14.
J Bacteriol ; 198(15): 2131-9, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27246568

ABSTRACT

UNLABELLED: Intracellular bacterial pathogens in the family Chlamydiaceae are causes of human blindness, sexually transmitted disease, and pneumonia. Genetic dissection of the mechanisms of chlamydial pathogenicity has been hindered by multiple limitations, including the inability to inactivate genes that would prevent the production of elementary bodies. Many genes are also Chlamydia-specific genes, and chlamydial genomes have undergone extensive reductive evolution, so functions often cannot be inferred from homologs in other organisms. Conditional mutants have been used to study essential genes of many microorganisms, so we screened a library of 4,184 ethyl methanesulfonate-mutagenized Chlamydia trachomatis isolates for temperature-sensitive (TS) mutants that developed normally at physiological temperature (37°C) but not at nonphysiological temperatures. Heat-sensitive TS mutants were identified at a high frequency, while cold-sensitive mutants were less common. Twelve TS mutants were mapped using a novel markerless recombination approach, PCR, and genome sequencing. TS alleles of genes that play essential roles in other bacteria and chlamydia-specific open reading frames (ORFs) of unknown function were identified. Temperature-shift assays determined that phenotypes of the mutants manifested at distinct points in the developmental cycle. Genome sequencing of a larger population of TS mutants also revealed that the screen had not reached saturation. In summary, we describe the first approach for studying essential chlamydial genes and broadly applicable strategies for genetic mapping in Chlamydia spp. and mutants that both define checkpoints and provide insights into the biology of the chlamydial developmental cycle. IMPORTANCE: Study of the pathogenesis of Chlamydia spp. has historically been hampered by a lack of genetic tools. Although there has been recent progress in chlamydial genetics, the existing approaches have limitations for the study of the genes that mediate growth of these organisms in cell culture. We used a genetic screen to identify conditional Chlamydia mutants and then mapped these alleles using a broadly applicable recombination strategy. Phenotypes of the mutants provide fundamental insights into unexplored areas of chlamydial pathogenesis and intracellular biology. Finally, the reagents and approaches we describe are powerful resources for the investigation of these organisms.


Subject(s)
Chlamydia trachomatis/physiology , Recombination, Genetic , Temperature , Alleles , Chlamydia trachomatis/genetics , Gene Expression Regulation, Bacterial/physiology , Genome, Bacterial , Genotype , HeLa Cells , Humans , Mutation
15.
Microbes Infect ; 18(4): 245-53, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26706820

ABSTRACT

Numerous Chlamydia trachomatis proteins have been identified as potential subunit vaccines, of which the major outer-membrane protein (MOMP) has, so far, proven the most efficacious. Recently, subunit A of the V-type ATP synthase (ATPase; TC0582) complex was shown to elicit partial protection against infection. Computational modeling of a neighboring gene revealed a novel subunit of the V-type ATPase (TC0583). To determine if this newly identified subunit could induce protection and/or enhance the partial protection provided by subunit A alone, challenge studies were performed using a combination of these recombinant proteins. The TC0583 subunit alone and concurrently with TC0582, was used to vaccinate BALB/c mice utilizing CpG-1826 and Montanide ISA 720 VG as adjuvants. Vaccinated animals were challenged intranasally with Chlamydia muridarum and the course of the infection was followed. Mice immunized with individual antigens showed minimal alleviation of body weight reduction; however, mice immunized with TC0583 and TC0582 in combination, displayed weight loss levels close to those observed with MOMP. Importantly, immunization with a combination of recombinant subunit proteins reduced chlamydial inclusion forming units by approximately a log-fold. These protection levels support that, these highly conserved Chlamydia proteins, in combination with other antigens, may serve as potential vaccine candidates.


Subject(s)
ATP Synthetase Complexes/chemistry , ATP Synthetase Complexes/immunology , Bacterial Vaccines/immunology , Chlamydia muridarum/enzymology , Chlamydia muridarum/immunology , ATP Synthetase Complexes/genetics , Adjuvants, Immunologic/administration & dosage , Animals , Bacterial Vaccines/administration & dosage , Bacterial Vaccines/genetics , Chlamydia Infections/prevention & control , Inclusion Bodies/microbiology , Mice, Inbred BALB C , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/immunology , Treatment Outcome , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/genetics , Vaccines, Subunit/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
16.
Protein Sci ; 24(10): 1617-32, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26173998

ABSTRACT

A significant challenge to bacteriology is the relatively large proportion of proteins that lack sufficient sequence similarity to support functional annotation (i.e. hypothetical proteins). The aim of this study was to apply protein structural homology to gain insights into a candidate protein of unknown function (CT398) within the medically important, obligate intracellular bacterium Chlamydia trachomatis. C. trachomatis is a major human pathogen responsible for numerous infections throughout the world that can lead to blindness and infertility. A 2.12 Å crystal structure of hypothetical protein CT398 was determined that was comprised of N-terminal coiled-coil and C-terminal Zn-ribbon domains. The structure of CT398 displayed a high degree of structural similarity to FlgZ (Flagellar-associated zinc-ribbon domain protein) from Helicobacter pylori. This observation directed analyses of candidate protein partners of CT398, revealing interactions with two paralogous type III secretion system (T3SS) ATPase-regulators (CdsL and FliH) and the alternative sigma factor RpoN (σ(54) ). Furthermore, genetic introduction of a conditional expression, affinity-tagged construct into C. trachomatis enabled the purification of a CT398-RpoN-holoenzyme complex, suggesting a potential role for CT398 in modulating transcriptional activity during infection. The interactions reported here, in tandem with previous FlgZ studies in H. pylori, indicate that CT398 functions as a regulator of several key areas of chlamydial biology throughout the developmental cycle. Accordingly, we propose that CT398 be named CdsZ (Contact-dependent secretion-associated zinc-ribbon domain protein).


Subject(s)
Bacterial Proteins/chemistry , Chlamydia trachomatis/chemistry , Chlamydia trachomatis/metabolism , Holoenzymes/metabolism , Models, Biological , RNA Polymerase Sigma 54/chemistry , Sigma Factor/chemistry , Amino Acid Sequence , Bacterial Proteins/metabolism , Computer Simulation , DNA-Directed RNA Polymerases/chemistry , Holoenzymes/chemistry , Models, Molecular , Sequence Alignment
17.
Mol Microbiol ; 95(3): 365-82, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25382739

ABSTRACT

Cell division in Chlamydiae is poorly understood as apparent homologs to most conserved bacterial cell division proteins are lacking and presence of elongation (rod shape) associated proteins indicate non-canonical mechanisms may be employed. The rod-shape determining protein MreB has been proposed as playing a unique role in chlamydial cell division. In other organisms, MreB is part of an elongation complex that requires RodZ for proper function. A recent study reported that the protein encoded by ORF CT009 interacts with MreB despite low sequence similarity to RodZ. The studies herein expand on those observations through protein structure, mutagenesis and cellular localization analyses. Structural analysis indicated that CT009 shares high level of structural similarity to RodZ, revealing the conserved orientation of two residues critical for MreB interaction. Substitutions eliminated MreB protein interaction and partial complementation provided by CT009 in RodZ deficient Escherichia coli. Cellular localization analysis of CT009 showed uniform membrane staining in Chlamydia. This was in contrast to the localization of MreB, which was restricted to predicted septal planes. MreB localization to septal planes provides direct experimental observation for the role of MreB in cell division and supports the hypothesis that it serves as a functional replacement for FtsZ in Chlamydia.


Subject(s)
Bacterial Proteins/chemistry , Chlamydia trachomatis/physiology , Cytoskeletal Proteins/chemistry , Cytoskeletal Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Division , Chlamydia trachomatis/cytology , Computer Simulation , Crystallography, X-Ray , Cytoskeletal Proteins/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Genetic Complementation Test , Morphogenesis , Mutagenesis , Transcriptome , Two-Hybrid System Techniques
18.
J Biol Chem ; 289(46): 32214-32229, 2014 Nov 14.
Article in English | MEDLINE | ID: mdl-25253688

ABSTRACT

The obligate intracellular human pathogen Chlamydia trachomatis is the etiological agent of blinding trachoma and sexually transmitted disease. Genomic sequencing of Chlamydia indicated this medically important bacterium was not exclusively dependent on the host cell for energy. In order for the electron transport chain to function, electron shuttling between membrane-embedded complexes requires lipid-soluble quinones (e.g. menaquionone or ubiquinone). The sources or biosynthetic pathways required to obtain these electron carriers within C. trachomatis are poorly understood. The 1.58Å crystal structure of C. trachomatis hypothetical protein CT263 presented here supports a role in quinone biosynthesis. Although CT263 lacks sequence-based functional annotation, the crystal structure of CT263 displays striking structural similarity to 5'-methylthioadenosine nucleosidase (MTAN) enzymes. Although CT263 lacks the active site-associated dimer interface found in prototypical MTANs, co-crystal structures with product (adenine) or substrate (5'-methylthioadenosine) indicate that the canonical active site residues are conserved. Enzymatic characterization of CT263 indicates that the futalosine pathway intermediate 6-amino-6-deoxyfutalosine (kcat/Km = 1.8 × 10(3) M(-1) s(-1)), but not the prototypical MTAN substrates (e.g. S-adenosylhomocysteine and 5'-methylthioadenosine), is hydrolyzed. Bioinformatic analyses of the chlamydial proteome also support the futalosine pathway toward the synthesis of menaquinone in Chlamydiaceae. This report provides the first experimental support for quinone synthesis in Chlamydia. Menaquinone synthesis provides another target for agents to combat C. trachomatis infection.


Subject(s)
Bacterial Proteins/chemistry , Chlamydia trachomatis/metabolism , Vitamin K 2/metabolism , Amino Acid Sequence , Catalytic Domain , Computational Biology , Crystallography, X-Ray , Deoxyadenosines/chemistry , Ligands , Molecular Sequence Data , Nucleosides/chemistry , Nucleotidases/chemistry , Protein Binding , Protein Multimerization , Protein Structure, Tertiary , Proteome , Recombinant Proteins/chemistry , S-Adenosylhomocysteine/chemistry , Sequence Homology, Amino Acid , Thionucleosides/chemistry
19.
PLoS One ; 9(3): e91760, 2014.
Article in English | MEDLINE | ID: mdl-24646934

ABSTRACT

ChxR is an atypical two-component signal transduction response regulator (RR) of the OmpR/PhoB subfamily encoded by the obligate intracellular bacterial pathogen Chlamydia trachomatis. Despite structural homology within both receiver and effector domains to prototypical subfamily members, ChxR does not require phosphorylation for dimer formation, DNA binding or transcriptional activation. Thus, we hypothesized that ChxR is in a conformation optimal for DNA binding with limited interdomain interactions. To address this hypothesis, the NMR solution structure of the ChxR effector domain was determined and used in combination with the previously reported ChxR receiver domain structure to generate a full-length dimer model based upon SAXS analysis. Small-angle scattering of ChxR supported a dimer with minimal interdomain interactions and effector domains in a conformation that appears to require only subtle reorientation for optimal major/minor groove DNA interactions. SAXS modeling also supported that the effector domains were in a head-to-tail conformation, consistent with ChxR recognizing tandem DNA repeats. The effector domain structure was leveraged to identify key residues that were critical for maintaining protein - nucleic acid interactions. In combination with prior analysis of the essential location of specific nucleotides for ChxR recognition of DNA, a model of the full-length ChxR dimer bound to its cognate cis-acting element was generated.


Subject(s)
Bacterial Proteins/chemistry , Chlamydia trachomatis/metabolism , DNA, Bacterial/chemistry , Gene Expression Regulation, Bacterial , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chlamydia trachomatis/genetics , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Multimerization , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Signal Transduction , Tandem Repeat Sequences , Thermodynamics
20.
Antimicrob Agents Chemother ; 58(6): 3245-54, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24663021

ABSTRACT

Vaginally delivered microbicides are being developed to offer women self-initiated protection against transmission of sexually transmitted infections such as Chlamydia trachomatis. A small molecule, DS-96, rationally designed for high affinity to Escherichia coli lipid A, was previously demonstrated to bind and neutralize lipopolysaccharide (LPS) from a wide variety of Gram-negative bacteria (D. Sil et al., Antimicrob. Agents Chemother. 51: 2811-2819, 2007, doi:10.1128/AAC.00200-07). Aside from the lack of the repeating O antigen, chlamydial lipooligosaccharide (LOS) shares general molecular architecture features with E. coli LPS. Importantly, the portion of lipid A where the interaction with DS-96 is expected to take place is well conserved between the two organisms, leading to the hypothesis that DS-96 inhibits Chlamydia infection by binding to LOS and compromising the function. In this study, antichlamydial activity of DS-96 was examined in cell culture. DS-96 inhibited the intercellular growth of Chlamydia in a dose-dependent manner and offered a high level of inhibition at a relatively low concentration (8 µM). The data also revealed that infectious elementary bodies (EBs) were predominantly blocked at the attachment step, as indicated by the reduced number of EBs associated with the host cell surface following pretreatment. Of those EBs that were capable of attachment, the vast majority was unable to gain entry into the host cell. Inhibition of EB attachment and entry by DS-96 suggests that Chlamydia LOS is critical to these processes during the developmental cycle. Importantly, given the low association of host toxicity previously reported by Sil et al., DS-96 is expected to perform well in animal studies as an active antichlamydial compound in a vaginal microbicide.


Subject(s)
Anti-Bacterial Agents/pharmacology , Attachment Sites, Microbiological/drug effects , Chlamydia Infections/drug therapy , Chlamydia trachomatis , Lipopolysaccharides/metabolism , Spermine/analogs & derivatives , Animals , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/toxicity , Antibodies, Bacterial/metabolism , Cell Survival/drug effects , Centrifugation , Chlamydia Infections/metabolism , Chlamydia Infections/pathology , Chlamydia trachomatis/drug effects , Chlamydia trachomatis/growth & development , Dose-Response Relationship, Drug , Fibroblasts/drug effects , Lipid A/metabolism , Mice , Phosphates/metabolism , Spermine/metabolism , Spermine/pharmacology , Spermine/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...