Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 48, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34996926

ABSTRACT

The electrical characteristics of quad-crescent-shaped silicon nanowire (NW) solar cells (SCs) are numerically analyzed and as a result their performance optimized. The structure discussed consists of four crescents, forming a cavity that permits multiple light scattering with high trapping between the NWs. Additionally, new modes strongly coupled to the incident light are generated along the NWs. As a result, the optical absorption has been increased over a large portion of light wavelengths and hence the power conversion efficiency (PCE) has been improved. The electron-hole (e-h) generation rate in the design reported has been calculated using the 3D finite difference time domain method. Further, the electrical performance of the SC reported has been investigated through the finite element method, using the Lumerical charge software package. In this investigation, the axial and core-shell junctions were analyzed looking at the reported crescent and, as well, conventional NW designs. Additionally, the doping concentration and NW-junction position were studied in this design proposed, as well as the carrier-recombination-and-lifetime effects. This study has revealed that the high back surface field layer used improves the conversion efficiency by [Formula: see text] 80%. Moreover, conserving the NW radial shell as a low thickness layer can efficiently reduce the NW sidewall recombination effect. The PCE and short circuit current were determined to be equal to 18.5% and 33.8 mA[Formula: see text] for the axial junction proposed. However, the core-shell junction shows figures of 19% and 34.9 mA[Formula: see text]. The suggested crescent design offers an enhancement of 23% compared to the conventional NW, for both junctions. For a practical surface recombination velocity of [Formula: see text] cm/s, the PCE of the proposed design, in the axial junction, has been reduced to 16.6%, with a reduction of 11%. However, the core-shell junction achieves PCE of 18.7%, with a slight reduction of 1.6%. Therefore, the optoelectronic performance of the core-shell junction was marginally affected by the NW surface recombination, compared to the axial junction.

2.
Opt Express ; 29(9): 13641-13656, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33985095

ABSTRACT

Nanostructured semiconductor nanowires (NWs) present a smart solution for broadband absorption solar cells (SCs) with high efficiency and low-cost. In this paper, a novel design of quad crescent-shaped silicon NW SC is introduced and numerically studied. The suggested NW has quad crescent shapes which create a cavity between any adjacent NWs. Such a cavity will permit multiple light scattering with improved absorption. Additionally, new modes will be excited along the NWs, which are highly coupled with the incident light. Further, the surface reflection from the crescent NWs is decreased due to the reduced surface filling ratio. The finite difference time domain method is utilized to analyze the optical characteristics of the reported structure. The proposed NW offers short circuit current density (Jsc) of 27.8 mA/cm2 and ultimate efficiency (ηul) of 34% with an enhancement of 14% and volume reduction of 40% compared to the conventional NWs. The Jsc and ηul are improved to 35.8 mA/cm2 and 43.7% by adding a Si substrate and back reflector to the suggested crescent NWs.

3.
Sci Rep ; 7(1): 4169, 2017 06 23.
Article in English | MEDLINE | ID: mdl-28646199

ABSTRACT

A crystal superlattice structure featuring nonlinear layers with alternating orthogonal optic axes interleaved with orthogonal poling directions, is shown to generate high-quality hyperentangled photon pairs via orthogonal quasi-phase-matched spontaneous parametric downconversion. We demonstrate that orthogonal quasi-phase matching (QPM) processes in a single nonlinear domain structure correct phase and group-velocity mismatches concurrently. Compared with the conventional two-orthogonal-crystals source and the double-nonlinearity single-crystal source, the orthogonal QPM superlattice is shown to suppress the spatial and temporal distinguishability of the generated photon pairs by several orders of magnitude, depending on the number of layers. This enhanced all-over-the-cone indistinguishability enables the generation of higher fluxes of photon-pairs by means of the combined use of (a) long nonlinear crystal in noncollinear geometry, (b) low coherence-time pumping and ultra-wide-band spectral detection, and (c) focused pumping and over-the-cone detection. While each of these three features is challenging by itself, it is remarkable that the orthogonal QPM superlattice meets all of these challenges without the need for separate spatial or temporal compensation.

4.
Appl Opt ; 55(21): 5614-22, 2016 Jul 20.
Article in English | MEDLINE | ID: mdl-27463915

ABSTRACT

In this paper, we evaluate the performance of hybrid differential phase shift keying-multipulse pulse position modulation (DPSK-MPPM) techniques in long-haul nonlinear-dispersive optical fiber transmission. An expression for the nonlinear interference variance is obtained analytically using the Gaussian noise (GN) model. We derive upper-bound expressions that take into account the fiber nonlinearity impact on the DPSK-MPPM system's performance for both bit- and symbol-error rates (BER and SER). The tightness of the BER's upper bound is verified using Monte Carlo simulation. The numerical analysis is carried out based on the proposed setup supplemented by a realistic simulation scenario for the DPSK-MPPM long-haul optical transmission system. Our results reveal that while the hybrid DPSK-MPPM technique outperforms both traditional DPSK and MPPM techniques under amplified spontaneous emission (ASE) noise (linear limit), it is less robust when fiber nonlinearity is considered. However, under the impact of low nonlinearity, the performance of a hybrid technique still surpasses the traditional ones. We also discuss the effect of some wavelength-division multiplexing (WDM) parameters on optimal system performance. The nonlinear interference penalties on the maximum reachable distances by both hybrid and traditional modulation systems are then investigated at a forward-error correction (FEC) requirement (BER=10-3). In particular, at an average launch power of -8 dBm, the hybrid DQPSK-MPPM system with a total frame length of eight time slots including two signal time slots outreaches a traditional DQPSK system by 950 km.

SELECTION OF CITATIONS
SEARCH DETAIL
...