Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Genet Metab ; 141(3): 108148, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38302374

ABSTRACT

BACKGROUND: Aromatic l-amino acid decarboxylase deficiency (AADCD) is a rare, autosomal-recessive neurometabolic disorder caused by variants in dopa decarboxylase (DDC) gene, resulting in a severe combined deficiency of serotonin, dopamine, norepinephrine, and epinephrine. Birth prevalence of AADCD varies by population. In pilot studies, 3-O-methyldopa (3-OMD) was shown to be a reliable biomarker for AADCD in high-throughput newborn screening (NBS) allowing an early diagnosis and access to gene therapy. To evaluate the usefulness of this method for routine NBS, 3-OMD screening results from the largest three German NBS centers were analyzed. METHODS: A prospective, multicenter (n = 3) NBS pilot study evaluated screening for AADCD by quantifying 3-OMD in dried blood spots (DBS) using tandem mass spectrometry (MS/MS). RESULTS: In total, 766,660 neonates were screened from January 2021 until June 2023 with 766,647 with unremarkable AADCD NBS (766,443 by 1st-tier analysis and 204 by 2nd-tier analysis) and 13 with positive NBS result recalled for confirmatory diagnostics (recall-rate about 1:59,000). Molecular genetic analysis confirmed AADCD (c.79C > T p.[Arg27Cys] in Exon 2 und c.215 A > C p.[His72Pro] in Exon 3) in one infant. Another individual was highly suspected with AADCD but died before confirmation (overall positive predictive value 0.15). False-positive results were caused by maternal L-Dopa use (n = 2) and prematurity (30th and 36th week of gestation, n = 2). However, in 63% (n = 7) the underlying etiology for false positive results remained unexplained. Estimated birth prevalence (95% confidence interval) was 1:766,660 (95% CI 1:775,194; 1:769,231) to 1:383,330 (95% CI 1:384,615; 1:383,142). The identified child remained asymptomatic until last follow up at the age of 9 months. CONCLUSIONS: The proposed screening strategy with 3-OMD detection in DBS is feasible and effective to identify individuals with AADCD. The estimated birth prevalence supports earlier estimations and confirms AADCD as a very rare disorder. Pre-symptomatic identification by NBS allows a disease severity adapted drug support to diminish clinical complications until individuals are old enough for the application of the gene therapy.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Aromatic-L-Amino-Acid Decarboxylases/deficiency , Tandem Mass Spectrometry , Infant , Infant, Newborn , Child , Humans , Neonatal Screening/methods , Pilot Projects , Prevalence , Prospective Studies , Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/epidemiology , Amino Acid Metabolism, Inborn Errors/genetics
2.
Klin Padiatr ; 235(6): 366-372, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37748509

ABSTRACT

BACKGROUND: Sickle cell disease (SCD) is a group of hemoglobinopathies with a common point mutation causing the production of sickle cell hemoglobin (HbS). In high-throughput newborn screening (NBS) for SCD, a two-step procedure is suitable, in which qPCR first pre-selects relevant samples that are differentiated by a second method. METHODS: Three NBS centers using qPCR-based primary screening for SCD performed a laboratory comparison. Methods using tandem MS or HPLC were used for differentiation. RESULTS: In a benchmarking test, 450 dried blood samples were analyzed. Samples containing HbS were detected as reliably by qPCR as by methods established for hemoglobinopathy testing. In a two-step screening approach, the 2nd-tier-analyses have to distinguish the carrier status from pathological variants. In nine months of regular screening, a total of 353,219 samples were analyzed using two-stage NBS procedures. The 1st-tier screening by qPCR reduced the number of samples for subsequent differentiation by>99.5%. Cases with carrier status or other variants were identified as inconspicuous while 78 cases with SCD were revealed. The derived incidence of 1:4,773, is in good agreement with previously published incidences. CONCLUSION: In high-throughput NBS for SCD, qPCR is suitable to focus 2nd-tier analyses on samples containing HbS, while being unaffected by factors such as prematurity or transfusions. The substantial reduction of samples numbers positively impacts resource conservation, sustainability, and cost-effectiveness. No false negative cases came to attention.


Subject(s)
Anemia, Sickle Cell , Infant, Newborn, Diseases , Infant, Newborn , Humans , Neonatal Screening/methods , Anemia, Sickle Cell/diagnosis , Anemia, Sickle Cell/genetics , Hemoglobin, Sickle/genetics , Hemoglobin, Sickle/analysis , Incidence
SELECTION OF CITATIONS
SEARCH DETAIL
...