Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Osteoarthr Cartil Open ; 6(1): 100434, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38322145

ABSTRACT

Objectives: Modic type 1 changes (MC1) are vertebral endplate bone marrow (BM) lesions observed on magnetic resonance images in sub-populations of chronic low back pain (CLBP) patients. The etiopathogenesis remains unknown and treatments that modify the underlying pathomechanisms do not exist. We hypothesized that two biological MC1 subtypes exist: a bacterial and a non-bacterial. This would have important implications for developing treatments targeting the underlying pathomechanisms. Methods: Intervertebral disc (IVD) samples adjacent to MC1 (n â€‹= â€‹34) and control (n â€‹= â€‹11) vertebrae were collected from patients undergoing spinal fusion. Cutibacterium acnes (C.acnes) genome copy numbers (GCNs) were quantified in IVD tissues with 16S qPCR, transcriptomic signatures and cytokine profiles were determined in MC1 and control BM by RNA sequencing and immunoassay. Finally, we assessed if C.acnes GCNs are associated with blood plasma cytokines. Results: IVD tissues from control levels had <870 â€‹C.acnes GCNs/gram IVD. MC1-adjacent IVDs had either "low" (<870) or "high" (>870) C.acnes GCNs. MC1 patients with "high" C.acnes GCNs had upregulated innate immune cell signatures (neutrophil, macrophage/monocyte) and pro-inflammatory cytokines related to neutrophil and macrophage/monocyte function in the BM, consistent with a host defense against bacterium. MC1 patients with "low" C.acnes GCNs had increased adaptive immune cell signatures (T-and B-cell) in the BM and elevated IL-13 blood plasma levels. Conclusion: Our study provides the first evidence for the existence of bacterial (C.acnes "high") and non-bacterial (C.acnes "low") subtypes in MC1 patients with CLBP. This supports the need for different treatment strategies.

2.
Eur Cell Mater ; 44: 101-114, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36254571

ABSTRACT

Extensive extracellular matrix production and increased cell-matrix adhesion by bone marrow stromal cells (BMSCs) are hallmarks of fibrotic alterations in the vertebral bone marrow known as Modic type 1 changes (MC1). MC1 are associated with non-specific chronic low-back pain. To identify treatment targets for MC1, in vitro studies using patient BMSCs are important to reveal pathological mechanisms. For the culture of BMSCs, fibroblast growth factor 2 (FGF2) is widely used. However, FGF2 has been shown to suppress matrix synthesis in various stromal cell populations. The aim of the present study was to investigate whether FGF2 affected the in vitro study of the fibrotic pathomechanisms of MC1-derived BMSCs. Transcriptomic changes and changes in cell-matrix adhesion of MC1-derived BMSCs were compared to intra-patient control BMSCs in response to FGF2. RNA sequencing and quantitative real-time polymerase chain reaction revealed that pro-fibrotic genes and pathways were not detectable in MC1-derived BMSCs when cultured in the presence of FGF2. In addition, significantly increased cell-matrix adhesion of MC1-derived BMSCs was abolished in the presence of FGF2. In conclusion, the data demonstrated that FGF2 overrides key pro-fibrotic features of MC1 BMSCs in vitro. Usage of FGF2-supplemented media in studies of fibrotic mechanisms should be critically evaluated as it could override normally dominant biological and biophysical cues.


Subject(s)
Fibroblast Growth Factor 2 , Mesenchymal Stem Cells , Bone Marrow , Bone Marrow Cells , Fibroblast Growth Factor 2/pharmacology , Humans , Stromal Cells
3.
Eur Cell Mater ; 41: 648-667, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34101158

ABSTRACT

Modic type 1 changes (MC1) are painful vertebral bone marrow lesions frequently found in patients suffering from chronic low-back pain. Marrow fibrosis is a hallmark of MC1. Bone marrow stromal cells (BMSCs) are key players in other fibrotic bone marrow pathologies, yet their role in MC1 is unknown. The present study aimed to characterise MC1 BMSCs and hypothesised a pro-fibrotic role of BMSCs in MC1. BMSCs were isolated from patients undergoing lumbar spinal fusion from MC1 and adjacent control vertebrae. Frequency of colony-forming unit fibroblast (CFU-F), expression of stem cell surface markers, differentiation capacity, transcriptome, matrix adhesion, cell contractility as well as expression of pro-collagen type I alpha 1, α-smooth muscle actin, integrins and focal adhesion kinase (FAK) were compared. More CFU-F and increased expression of C-X-C-motif-chemokine 12 were found in MC1 BMSCs, possibly indicating overrepresentation of a perisinusoidal BMSC population. RNA sequencing analysis showed enrichment in extracellular matrix proteins and fibrosis-related signalling genes. Increases in pro-collagen type I alpha 1 expression, cell adhesion, cell contractility and phosphorylation of FAK provided further evidence for their pro-fibrotic phenotype. Moreover, a leptin receptor high expressing (LEPRhigh) BMSC population was identified that differentiated under transforming growth factor beta 1 stimulation into myofibroblasts in MC1 but not in control BMSCs. In conclusion, pro-fibrotic changes in MC1 BMSCs and a LEPRhigh MC1 BMSC subpopulation susceptible to myofibroblast differentiation were found. Fibrosis is a hallmark of MC1 and a potential therapeutic target. A causal link between the pro-fibrotic phenotype and clinical characteristics needs to be demonstrated.


Subject(s)
Fibrosis/physiopathology , Mesenchymal Stem Cells/physiology , Aged , Aged, 80 and over , Biomarkers/metabolism , Cell Differentiation/physiology , Extracellular Matrix/metabolism , Extracellular Matrix/physiology , Female , Fibrosis/metabolism , Humans , Male , Mesenchymal Stem Cells/metabolism , Middle Aged , Myofibroblasts/metabolism , Myofibroblasts/physiology , Phenotype , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...