Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Chem ; 6: 120, 2018.
Article in English | MEDLINE | ID: mdl-29725588

ABSTRACT

A general strategy for the synthesis of N-peptide-6-amino-D-luciferin conjugates has been developed. The applicability of the strategy was demonstrated with the preparation of a known substrate, N-Z-Asp-Glu-Val-Asp-6-amino-D-luciferin (N-Z-DEVD-aLuc). N-Z-DEVD-aLuc was obtained via a hybrid liquid/solid phase synthesis method, in which the appropriately protected C-terminal amino acid was coupled to 6-amino-2-cyanobenzothiazole and the resulting conjugate was reacted with D-cysteine in order to get the protected amino acid-6-amino-D-luciferin conjugate, which was then attached to resin. The resulting loaded resin was used for the solid-phase synthesis of the desired N-peptide-6-amino-D-luciferin conjugate without difficulties, which was then attested with NMR spectroscopy and LC-MS, and successfully tested in a bioluminescent system.

2.
J Org Chem ; 61(18): 6326-6339, 1996 Sep 06.
Article in English | MEDLINE | ID: mdl-11667474

ABSTRACT

[[9-[(9-Fluorenylmethyloxycarbonyl)amino]xanthen-2(or 3)-yl]oxy]alkanoic acid (XAL) handles have been prepared by efficient four-step routes from 2- or 3-hydroxyxanthone and coupled onto a range of amino-functionalized supports. The resultant XAL supports are the starting points for solid-phase peptide synthesis by Fmoc chemistry. Upon completion of chain assembly, C-terminal peptide amides are released in excellent yields and purities by use of low concentrations [1-5% (v/v)] of trifluoroacetic acid (TFA) in dichloromethane, often without a need for added carbocation scavengers. These cleavage conditions allow retention of all or a significant portion of tert-butyl type and related side-chain protecting groups, which subsequently may be removed fully in a solution process carried out at higher acid concentration. XAL supports are particularly useful for the synthesis of acid-sensitive peptides, including tryptophan-containing sequences that are known to be susceptible to yield- and/or purity-reducing alkylation side reactions. The effectiveness of this chemistry was shown with the syntheses of prothrombin (1-9), acyl carrier protein (65-74), Tabanus atratus adipokinetic hormone, fragments of the protein RHK 1, CCK-8 sulfate, and oxytocin. Furthermore, the application of XAL supports for the preparation of fully protected peptide amides has been demonstrated.

SELECTION OF CITATIONS
SEARCH DETAIL
...