Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(7): 2271-4, 2016 Jul.
Article in Chinese | MEDLINE | ID: mdl-30036006

ABSTRACT

Prompt gamma neutron activation analysis (PGNAA) technology is used in heavy metals measurement. It is found that the detection accuracy of lead (Pb) is impacted heavily by mercury (Hg), because of thermal neutron cross section of mercury is much bigger than lead. In this paper, a new combined detection method was proposed to improve the lead measurement accuracy in situ environmental water rejects analysis by PGNAA-XRF. Thus, a combined measurement facility was developed to analyze the mercury and lead in water simultaneously. The geometry of set-up is determined by a series of simulations with the MCNP code to improve the detection efficiency of the prompt gamma-ray intensity (Iγ) and characteristic X-ray fluorescence intensity (IX) of element. The ideal sample height and cavity are 33 and 16 cm, respectively. The influence of the relationship between Iγ, IX and different concentration (ci) of Hg and Pb was researched by MCNP calculations, respectively. The simulation results showed that there were good linear relationships between Iγ, IX and ci, respectively. The empirical formula of combined detection method was proposed based on the above calculations. The limits of detection for Hg and Pb with the combined measurement instrument were 3.89 and 4.80 mg·kg-1, respectively. It is a significant increase in performance of the mercury and lead detection simultaneously.

2.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(11): 3123-6, 2014 Nov.
Article in Chinese | MEDLINE | ID: mdl-25752071

ABSTRACT

In the present paper, a new combined detection method was proposed using prompt gamma neutron activation analysis (PGNAA) and characteristic X-ray fluorescence to improve the heavy metals measurement accuracy for in-situ environmental water rejects analysis by PGNAA technology. Especially, the characteristic X-ray fluorescence (XRF) of heavy metals is induced by prompt gamma-ray directly instead of the traditional excitation sources. Thus, a combined measurement facility with an 241 AmBe neutron source, a BGO detector and a NaI-Be detector was developed to analyze the pollutants in water. The two detectors were respectively used to record prompt gamma-ray and characteristic X-ray fluorescence of heavy metals. The prompt gamma-ray intensity (I(γ)) and characteristic X-ray fluorescence intensity (I(x)) was determined by MCNP calculations for different concentration (c(i)) of chromium (Cr), cadmium (Cd), mercury (Hg) and lead (Pb), respectively. The simulation results showed that there was a good linear relationship between I(γ), I(x) and (c(i)), respectively. The empirical formula of combined detection method was given based on the above calculations. It was found that the combined detection method was more sensitive for high atomic number heavy metals like Hg and Pb measurement than low atomic number like Cr and Cd by comparing and analyzing I(γ) and I(x). The limits of detection for Hg and Pb by the combined measurement instrument were 17.4 and 24.2 mg x kg(-1), respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...