Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(19): 193601, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38804949

ABSTRACT

Coherent and dissipative interactions between different quantum systems are essential for the construction of hybrid quantum systems and the investigation of novel quantum phenomena. Here, we propose and analyze a magnon-skyrmion hybrid quantum system, consisting of a micromagnet and nearby magnetic skyrmions. We predict a strong-coupling mechanism between the magnonic mode of the micromagnet and the quantized helicity degree of freedom of the skyrmion. We show that with this hybrid setup it is possible to induce magnon-mediated nonreciprocal interactions and responses between distant skyrmion qubits or between skyrmion qubits and other quantum systems like superconducting qubits. This work provides a quantum platform for the investigation of diverse quantum effects and quantum information processing with magnetic microstructures.

2.
Phys Rev Lett ; 130(7): 073602, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36867822

ABSTRACT

Coherent tripartite interactions among degrees of freedom of completely different nature are instrumental for quantum information and simulation technologies, but they are generally difficult to realize and remain largely unexplored. Here, we predict a tripartite coupling mechanism in a hybrid setup comprising a single nitrogen-vacancy (NV) center and a micromagnet. We propose to realize direct and strong tripartite interactions among single NV spins, magnons, and phonons via modulating the relative motion between the NV center and the micromagnet. Specifically, by introducing a parametric drive (two-phonon drive) to modulate the mechanical motion (such as the center-of-mass motion of a NV spin in diamond trapped in an electrical trap or a levitated micromagnet in a magnetic trap), we can obtain a tunable and strong spin-magnon-phonon coupling at the single quantum level, with up to 2 orders of magnitude enhancement for the tripartite coupling strength. This enables, for example, tripartite entanglement among solid-state spins, magnons, and mechanical motions in quantum spin-magnonics-mechanics with realistic experimental parameters. This protocol can be readily implemented with the well-developed techniques in ion traps or magnetic traps and could pave the way for general applications in quantum simulations and information processing based on directly and strongly coupled tripartite systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...