Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(12)2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37376307

ABSTRACT

The 70% polyvinyl alcohol/30% polyvinyl pyrrolidone (PVA/PVP) polymer blends, with different weight ratios of tetrapropylammonium iodide (TPAI) or tetrahexylammonium iodide (THAI) salt, were prepared using dimethyl sulfoxide (DMSO) as a solvent. The X-ray diffraction technique was used to trace the crystalline nature of the formed blends. The SEM and EDS techniques were applied to figure out the morphology of the blends. The variation in the FTIR vibrational bands was used to investigate the chemical composition and the effect of different salt doping on the functional groups of the host blend. The influence of the salt type (TPAI or THAI) and its ratio on the linear and nonlinear optical parameters for the doped blends were investigated in detail. Absorbance and reflectance are highly enhanced in the UV region reaching a maximum for the blend with 24% TPAI or THAI; so, it can be employed as shielding materials for UVA and UVB types. The direct (5.1 eV) and indirect (4.8 eV) optical bandgaps were reduced continuously to (3.52, 3.63 eV) and (3.45, 3.51 eV) while increasing the content of TPAI or THAI, respectively. The blend doped with 24% wt TPAI exhibited the highest refractive index (around 3.5 in 400-800 nm). The DC conductivity is affected by the content and type of salt, its dispersion, and blend-salt interaction. The activation energies of different blends were obtained by applying the Arrhenius formula.

2.
Polymers (Basel) ; 15(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37177234

ABSTRACT

The most efficient way to create novel materials that may be used in a variety of optoelectronic applications is thought to be doped mixed polymers with appropriate fillers. Undoped and doped PVC polymers with ZnS/Mn formed at different temperatures were fabricated using the casting method. The Rietveld method was used to discover the structure and microstructure of Zn0.95Mn0.05S prepared at T = 300, 400, and 500 °C. The distribution and existence of the nanofiller over the PVC matrix were determined via XRD, FTIR, EDS, and SEM techniques. The effect of the preparation temperatures of the ZnS/Mn nanofiller on the absorption, transmittance, reflectance, refractive index, extinction coefficient, dielectric constant, AC conductivity, electrical modulus, and DC conductivity activation energy data of the PVC polymer was studied using the diffused reflectance technique. Doping PVC with ZnS/Mn (prepared at 300 °C) lowered the direct and indirect optical band gaps from 5.4 and 4.52 eV to minimum values of 4.55 and 3.63 eV. The fluorescence intensity of pure PVC is greatly enhanced upon loading with ZnS/Mn. The PVC exhibited two near UV peaks, one violet and one blue color, while, in addition, the doped polymers exhibited green and orange colors. The corresponding CIE diagram for all the samples was also determined.

3.
Arch Environ Contam Toxicol ; 70(3): 544-55, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26710766

ABSTRACT

This work aimed to characterize dust-fall samples collected from street's trees in Greater Cairo (GC), Egypt, and its surroundings by different spectroscopic techniques, namely; X-ray diffraction (XRD), attenuated total-reflection Fourier transform infrared (ATR-FTIR), particle-size analyzer, and scanning electron microscopy (SEM) combined with energy dispersive X-ray measurements. Samples were collected from 19 different locations inside and outside of GC. Quantitative phase analysis of the dust-fall samples was performed using the Rietveld method. Results showed that the most frequently observed phases in the dust-fall samples were calcite (CaCO3), dolomite (CaMg(CO3)2), gypsum (CaSO4·2H2O), and quartz (SiO2) with average concentrations of 39 ± 16, 8 ± 7, 22 ± 13, and 33 ± 14 wt%, respectively. The occurrence of these constituents referred to a combination of different anthropogenic and natural sources. The ATR-FTIR results are in good agreements with XRD data of the different observed phases. Based on the SEM and particle-size measurements, quantitative determination of the particle-size distribution was described. It was found that not only the large-sized particles are deposited but also the small-sized ones (PM10 and PM2.5). In addition, the particle size of the collected dust-fall samples varied from 0.1 to 200 µm with an average particle size of 17.36 µm; however, the particle size ranged from 2.5 to 40 µm predominated in all of the dust-fall samples.


Subject(s)
Air Pollutants/analysis , Dust/analysis , Environmental Monitoring , Calcium Carbonate , Egypt , Magnesium , Microscopy, Electron, Scanning , Particle Size , Quartz , Silicon Dioxide
SELECTION OF CITATIONS
SEARCH DETAIL
...