Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Cancer ; 12: 381, 2012 Aug 31.
Article in English | MEDLINE | ID: mdl-22938713

ABSTRACT

BACKGROUND: Since proteins involved in chemotherapy drug pharmacokinetics and pharmacodynamics have a strong impact on the uptake, metabolism, and efflux of such drugs, they likely play critical roles in resistance to chemotherapy drugs in cancer patients. METHODS: To investigate this hypothesis, we conducted a whole genome microarray study to identify difference in the expression of genes between isogenic doxorubicin-sensitive and doxorubicin-resistant MCF-7 breast tumour cells. We then assessed the degree of over-representation of doxorubicin pharmacokinetic and pharmacodynamic genes in the dataset of doxorubicin resistance genes. RESULTS: Of 27,958 Entrez genes on the array, 7.4 per cent or 2,063 genes were differentially expressed by ≥ 2-fold between wildtype and doxorubicin-resistant cells. The false discovery rate was set at 0.01 and the minimum p value for significance for any gene within the "hit list" was 0.01. Seventeen and 43 per cent of doxorubicin pharmacokinetic genes were over-represented in the hit list, depending upon whether the gene name was identical or within the same gene family, respectively. The most over-represented genes were within the 1C and 1B families of aldo-keto reductases (AKRs), which convert doxorubicin to doxorubicinol. Other genes convert doxorubicin to other metabolites or affect the influx, efflux, or cytotoxicity of the drug. In further support of the role of AKRs in doxorubicin resistance, we observed that, in comparison to doxorubicin, doxorubincol exhibited dramatically reduced cytotoxicity, reduced DNA-binding activity, and strong localization to extra nuclear lysosomes. Pharmacologic inhibition of the above AKRs in doxorubicin-resistant cells increased cellular doxorubicin levels, restored doxorubicin cytotoxicity and re-established doxorubicin localization to the nucleus. The properties of doxorubicinol were unaffected. CONCLUSIONS: These findings demonstrate the utility of using curated pharmacokinetic and pharmacodynamic knowledge bases to identify highly relevant genes associated with doxorubicin resistance. The induction of one or more of these genes was found to be correlated with changes in the drug's properties, while inhibiting one specific class of these genes (the AKRs) increased cellular doxorubicin content and restored drug DNA binding, cytotoxicity, and subcellular localization.


Subject(s)
Aldehyde Reductase/genetics , Aldehyde Reductase/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Doxorubicin/analogs & derivatives , Doxorubicin/pharmacokinetics , 20-Hydroxysteroid Dehydrogenases/biosynthesis , 20-Hydroxysteroid Dehydrogenases/genetics , 20-Hydroxysteroid Dehydrogenases/metabolism , 3-Hydroxysteroid Dehydrogenases/biosynthesis , 3-Hydroxysteroid Dehydrogenases/genetics , 3-Hydroxysteroid Dehydrogenases/metabolism , Aldehyde Reductase/biosynthesis , Aldo-Keto Reductase Family 1 Member C3 , Aldo-Keto Reductases , Breast Neoplasms/metabolism , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cholic Acids/pharmacology , Cyclosporine/pharmacology , DNA, Neoplasm/metabolism , Doxorubicin/pharmacology , Drug Resistance, Neoplasm , Gene Expression Profiling , Humans , Hydroxyprostaglandin Dehydrogenases/biosynthesis , Hydroxyprostaglandin Dehydrogenases/genetics , Hydroxyprostaglandin Dehydrogenases/metabolism , Intracellular Space/drug effects , Intracellular Space/metabolism , MCF-7 Cells , Oligonucleotide Array Sequence Analysis
2.
Pharmacogenet Genomics ; 19(6): 477-88, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19440163

ABSTRACT

OBJECTIVES: Recent studies suggest that tumor cells overexpressing aldoketoreductases (AKRs) exhibit increased resistance to DNA damaging agents such as anthracyclines. AKRs may induce resistance to the anthracycline doxorubicin by catalyzing its conversion to the less toxic 13-hydroxy metabolite doxorubicinol. However, it has not been established whether during selection for anthracycline resistance, AKR overexpression in tumor cells can be correlated with the onset or magnitude of drug resistance and with appreciable conversion of anthracyclines to 13-hydroxy metabolites. METHODS AND FINDINGS: Through microarray and quantitative polymerase chain reaction studies involving rigid selection criteria and both correlative discriminate statistics and time-course models, we have identified several genes whose expression can be correlated with the onset and/or magnitude of anthracycline resistance, including AKR1C2 and AKR1C3. Also associated with the onset or magnitude of anthracycline resistance were genes involved in drug transport (ABCB1, ABCC1), cell signaling and transcription (RDC1, CXCR4), cell proliferation or apoptosis (BMP7, CAV1), protection from reactive oxygen species (AKR1C2, AKR1C3, FTL, FTH, TXNRD1, MT2A), and structural or immune system proteins (IFI30, STMN1). As expected, doxorubicin-resistant and epirubicin-resistant cells exhibited higher levels of doxorubicinol than wild-type cells, although at insufficient levels to account for significant drug resistance. Nevertheless, an inhibitor of Akr1c2 (5beta-cholanic acid) almost completely restored sensitivity to doxorubicin in ABCB1-deficient doxorubicin-resistant cells, while having no effect on ABCB1-expressing epirubicin-resistant cells. CONCLUSION: Taken together, we show for the first time that a variety of genes (particularly redox genes such as AKR1C2 and AKR1C3) can be temporally and causally correlated with the acquisition of anthracycline resistance in breast tumor cells.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Doxorubicin/pharmacology , Hydroxysteroid Dehydrogenases/genetics , 3-Hydroxysteroid Dehydrogenases/genetics , Aldo-Keto Reductase Family 1 Member C3 , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Enzyme Inhibitors , Female , Gene Expression Regulation, Neoplastic , Humans , Hydroxyprostaglandin Dehydrogenases/genetics , Hydroxysteroid Dehydrogenases/antagonists & inhibitors , Oligonucleotide Array Sequence Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...