Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Parkinsonism Relat Disord ; 105: 114-122, 2022 12.
Article in English | MEDLINE | ID: mdl-36413901

ABSTRACT

INTRODUCTION: Turning in gait digital parameters may be useful in measuring disease progression in Parkinson's disease (PD), however challenges remain over algorithm validation in real-world settings. The influence of clinician observation on turning outcomes is poorly understood. Our objective is to describe a unique in-home video dataset and explore the use of turning parameters as biomarkers in PD. METHODS: 11 participants with PD, 11 control participants stayed in a home-like setting living freely for 5 days (with two sessions of clinical assessment), during which high-resolution video was captured. Clinicians watched the videos, identified turns and documented turning parameters. RESULTS: From 85 hours of video 3869 turns were evaluated, averaging at 22.7 turns per hour per person. 6 participants had significantly different numbers of turning steps and/or turn duration between "ON" and "OFF" medication states. Positive Spearman correlations were seen between the Movement Disorders Society-sponsored revision of the Unified Parkinson's Disease Rating Scale III score with a) number of turning steps (rho = 0.893, p < 0.001), and b) duration of turn (rho = 0.744, p = 0.009) "OFF" medications. A positive correlation was seen "ON" medications between number of turning steps and clinical rating scale score (rho = 0.618, p = 0.048). Both cohorts took more steps and shorter durations of turn during observed clinical assessments than when free-living. CONCLUSION: This study shows proof of concept that real-world free-living turn duration and number of turning steps recorded can distinguish between PD medication states and correlate with gold-standard clinical rating scale scores. It illustrates a methodology for ecological validation of real-world digital outcomes.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/complications , Gait , Mental Status and Dementia Tests , Disease Progression , Algorithms
2.
Sensors (Basel) ; 21(12)2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34208690

ABSTRACT

Parkinson's disease (PD) is a chronic neurodegenerative condition that affects a patient's everyday life. Authors have proposed that a machine learning and sensor-based approach that continuously monitors patients in naturalistic settings can provide constant evaluation of PD and objectively analyse its progression. In this paper, we make progress toward such PD evaluation by presenting a multimodal deep learning approach for discriminating between people with PD and without PD. Specifically, our proposed architecture, named MCPD-Net, uses two data modalities, acquired from vision and accelerometer sensors in a home environment to train variational autoencoder (VAE) models. These are modality-specific VAEs that predict effective representations of human movements to be fused and given to a classification module. During our end-to-end training, we minimise the difference between the latent spaces corresponding to the two data modalities. This makes our method capable of dealing with missing modalities during inference. We show that our proposed multimodal method outperforms unimodal and other multimodal approaches by an average increase in F1-score of 0.25 and 0.09, respectively, on a data set with real patients. We also show that our method still outperforms other approaches by an average increase in F1-score of 0.17 when a modality is missing during inference, demonstrating the benefit of training on multiple modalities.


Subject(s)
Parkinson Disease , Humans , Machine Learning , Monitoring, Physiologic
3.
BMJ Open ; 10(11): e041303, 2020 11 30.
Article in English | MEDLINE | ID: mdl-33257491

ABSTRACT

INTRODUCTION: The impact of disease-modifying agents on disease progression in Parkinson's disease is largely assessed in clinical trials using clinical rating scales. These scales have drawbacks in terms of their ability to capture the fluctuating nature of symptoms while living in a naturalistic environment. The SPHERE (Sensor Platform for HEalthcare in a Residential Environment) project has designed a multi-sensor platform with multimodal devices designed to allow continuous, relatively inexpensive, unobtrusive sensing of motor, non-motor and activities of daily living metrics in a home or a home-like environment. The aim of this study is to evaluate how the SPHERE technology can measure aspects of Parkinson's disease. METHODS AND ANALYSIS: This is a small-scale feasibility and acceptability study during which 12 pairs of participants (comprising a person with Parkinson's and a healthy control participant) will stay and live freely for 5 days in a home-like environment embedded with SPHERE technology including environmental, appliance monitoring, wrist-worn accelerometry and camera sensors. These data will be collected alongside clinical rating scales, participant diary entries and expert clinician annotations of colour video images. Machine learning will be used to look for a signal to discriminate between Parkinson's disease and control, and between Parkinson's disease symptoms 'on' and 'off' medications. Additional outcome measures including bradykinesia, activity level, sleep parameters and some activities of daily living will be explored. Acceptability of the technology will be evaluated qualitatively using semi-structured interviews. ETHICS AND DISSEMINATION: Ethical approval has been given to commence this study; the results will be disseminated as widely as appropriate.


Subject(s)
Parkinson Disease , Activities of Daily Living , Feasibility Studies , Humans , Outcome Assessment, Health Care , Parkinson Disease/diagnosis , Symptom Assessment , Technology
SELECTION OF CITATIONS
SEARCH DETAIL
...