Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ChemSusChem ; 16(2): e202202161, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36445782

ABSTRACT

Aqueous processing of Ni-rich layered oxide cathode materials is a promising approach to simultaneously decrease electrode manufacturing costs, while bringing environmental benefits by substituting the state-of-the-art (often toxic and costly) organic processing solvents. However, an aqueous environment remains challenging due to the high reactivity of Ni-rich layered oxides towards moisture, leading to lithium leaching and Al current collector corrosion because of the resulting high pH value of the aqueous electrode paste. Herein, a facile method was developed to enable aqueous processing of LiNi0.8 Co0.1 Mn0.1 O2 (NCM811) by the addition of lithium sulfate (Li2 SO4 ) during electrode paste dispersion. The aqueously processed electrodes retained 80 % of their initial capacity after 400 cycles in NCM811||graphite full cells, while electrodes processed without the addition of Li2 SO4 reached 80 % of their capacity after only 200 cycles. Furthermore, with regard to electrochemical performance, aqueously processed electrodes using carbon-coated Al current collector outperformed reference electrodes based on state-of-the-art production processes involving N-methyl-2-pyrrolidone as processing solvent and fluorinated binders. The positive impact on cycle life by the addition of Li2 SO4 stemmed from a formed sulfate coating as well as different surface species, protecting the NCM811 surface against degradation. Results reported herein open a new avenue for the processing of Ni-rich NCM electrodes using more sustainable aqueous routes.

SELECTION OF CITATIONS
SEARCH DETAIL
...