Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Biotechnol ; 305: 51-60, 2019 Nov 10.
Article in English | MEDLINE | ID: mdl-31442501

ABSTRACT

Monoclonal antibody (mAb) fragmentation is a well-known degradation pathway that results in product loss and can significantly impact product quality, efficacy, or even cause immunogenic reactions, thus potentially endangering patients' health. It is recognised that residual proteases present among host cell proteins (HCPs) such as those expressed by Chinese Hamster Ovary (CHO) can induce fragmentation, and failure of their complete removal during downstream processing could cause fragmentation during mAb production and in the final drug product. We identified, using a protease inhibitor screen, an aspartic protease that contributes to proteolytic fragmentation of partially purified mAbs in multiple projects. Subsequent LC-MS analysis indicated that cathepsin D, a typical aspartic protease, was responsible for the observed fragmentation of in-process samples. To address the issue, an alternative chromatography wash was implemented at the capture step and has been demonstrated to be an effective and scalable solution to mitigate the residual cathepsin D associated fragmentation risk. Furthermore, a near real time targeted mass spectrometry method has been developed to proactively monitor the presence of cathepsin D during upstream and downstream process. Our approach demonstrated an emerging HCP mitigation strategy through integrated upstream and downstream involvement and holds great promise for a range of future applications.


Subject(s)
Cathepsin D/metabolism , Chromatography, Affinity/methods , Staphylococcal Protein A/metabolism , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , CHO Cells , Cricetulus , Drug Stability , Mass Spectrometry , Proteolysis
2.
Biotechnol Bioeng ; 116(7): 1684-1697, 2019 07.
Article in English | MEDLINE | ID: mdl-30882893

ABSTRACT

Cathepsin D has been identified as a challenge to remove in downstream bioprocessing of monoclonal antibodies (mAbs) due to interactions with some mAbs. This study focused on investigating the mechanisms of interaction between cathepsin D and two industrial mAbs using a combined experimental and computational approach. Surface plasmon resonance was used to study the impact of pH and salt concentration on these protein-protein interactions. While salt had a moderate effect on the interactions with one of the mAbs, the other mAb demonstrated highly salt-dependent association behavior. Cathepsin D binding to the mAbs was also seen to be highly pH dependent, with operation at pH 9 resulting in a significant decrease in the binding affinity. Protein-protein docking simulations identified three interaction sites on both mAbs; near the complementarity determining region (CDR), in the hinge, and in the CH 3 domain. In contrast, only one face of cathepsin D was identified to interact with all the three sites on the mAbs. Surface property analysis revealed that the binding regions on the mAbs contained strong hydrophobic clusters and were predominantly negatively charged. In contrast, the binding site on cathepsin D was determined to be highly positively charged and hydrophobic, indicating that these protein-protein interactions were likely due to a combination of hydrophobic and electrostatic interactions. Finally, covalent crosslinking coupled with mass spectrometry was used to validate the docking predictions and to further investigate the regions of interaction involved in mAb-cathepsin D binding. A strong agreement was observed between the two approaches, and the CDR loops were identified to be important for cathepsin D interactions. This study establishes a combined experimental and computational platform that can be used to probe mAb-host cell protein (HCP) interactions of importance in biomanufacturing.


Subject(s)
Antibodies, Monoclonal/chemistry , Cathepsin D/chemistry , Surface Plasmon Resonance , Humans , Hydrophobic and Hydrophilic Interactions , Protein Domains , Static Electricity
3.
J Proteome Res ; 16(5): 1924-1935, 2017 05 05.
Article in English | MEDLINE | ID: mdl-28367633

ABSTRACT

We present a mass spectral library-based method to identify tandem mass spectra of peptides that contain unanticipated modifications and amino acid variants. We describe this as a "hybrid" method because it combines matching both ion m/z and mass losses. The mass loss is the difference between the mass of an ion peak and the mass of its precursor. This difference, termed DeltaMass, is used to shift the product ions in the library spectrum that contain the modification, thereby allowing library product ions that contain the unexpected modification to match the query spectrum. Clustered unidentified spectra from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) and Chinese hamster ovary cells were used to evaluate this method. The results demonstrate the ability of the hybrid method to identify unanticipated modifications, insertions, and deletions, which may include those due to an incomplete protein sequence database or to search settings that exclude the correct identification, in high-resolution tandem mass spectra without regard to their precursor mass. This has been made possible by indexing of the m/z value of each fragment ion and its difference in mass from its precursor ion.


Subject(s)
Algorithms , Databases, Protein , Proteomics/methods , Tandem Mass Spectrometry/methods , Animals , CHO Cells , Cell Line, Tumor , Cricetulus , Databases, Factual , Humans , Ions , Molecular Weight , Proteomics/standards
4.
Biotechnol Prog ; 33(1): 140-145, 2017 01.
Article in English | MEDLINE | ID: mdl-27798957

ABSTRACT

Recombinant therapeutic monoclonal antibodies (mAbs) must be purified from host cell proteins (HCPs), DNA, and other impurities present in Chinese hamster ovary (CHO) cell culture media. HCPs can potentially result in adverse clinical responses in patients and, in specific cases, have caused degradation of the final mAb product. As reported previously, residual traces of cathepsin D caused particle formation in the final product of mAb-1. The current work was focused on identification of a primary sequence in mAb-1 responsible for the binding and consequent co-purification of trace levels of CHO cathepsin D. Surface plasmon resonance (SPR) was used to detect binding between immobilized CHO cathepsin D and a panel of mAbs. Out of 13 mAbs tested, only mAb-1 and mAb-6 bound to cathepsin D. An LYY motif in the HC CDR2 was common, yet unique, to only these two mAbs. Mutation of LYY to AAA eliminated binding of mAb-1 to cathepsin D providing confirmation that this sequence motif was involved in the binding to CHO cathepsin D. Interestingly, the binding between mAb-1 and cathepsin D was weaker than that of mAb-6, which may be related to the fact that two aspartic acid residues near the LYY motif in mAb-1 are replaced with neutral serine residues in mAb-6. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:140-145, 2017.


Subject(s)
Antibodies, Monoclonal/isolation & purification , Cathepsin D/isolation & purification , Culture Media/chemistry , Immunoglobulin G/isolation & purification , Recombinant Proteins/isolation & purification , Animals , Antibodies, Monoclonal/chemistry , CHO Cells , Cathepsin D/chemistry , Cathepsin D/genetics , Cricetulus , Immobilized Proteins/chemistry , Immunoglobulin G/chemistry , Immunoglobulin G/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
5.
J Infect Dis ; 213(11): 1800-8, 2016 06 01.
Article in English | MEDLINE | ID: mdl-26768253

ABSTRACT

The increasing incidence of Klebsiella pneumoniae infections refractory to treatment with current broad-spectrum antibiotic classes warrants the exploration of alternative approaches, such as antibody therapy and/or vaccines, for prevention and treatment. However, the lack of validated targets shared by spectrums of clinical strains poses a significant challenge. We adopted a target-agnostic approach to identify protective antibodies against K. pneumoniae Several monoclonal antibodies were isolated from phage display and hybridoma platforms by functional screening for opsonophagocytic killing activity. We further identified their common target antigen to be MrkA, a major protein in the type III fimbriae complex, and showed that these serotype-independent anti-MrkA antibodies reduced biofilm formation in vitro and conferred protection in multiple murine pneumonia models. Importantly, mice immunized with purified MrkA proteins also showed reduced bacterial burden following K. pneumoniae challenge. Taken together, these results support MrkA as a promising target for K. pneumoniae antibody therapeutics and vaccines.


Subject(s)
Antibodies, Bacterial/immunology , Antibodies, Monoclonal/immunology , Fimbriae Proteins/immunology , Klebsiella pneumoniae/immunology , Animals , Antibody Specificity , Bacterial Vaccines/immunology , Biofilms , Cytotoxicity, Immunologic , Humans , Hybridomas , Klebsiella Infections/prevention & control , Mice , Mice, Inbred C57BL , Peptide Library , Phagocytosis , Respiratory Mucosa/microbiology
6.
Mol Cancer Ther ; 14(7): 1637-49, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25948294

ABSTRACT

ADAM17 is the primary sheddase for HER pathway ligands. We report the discovery of a potent and specific ADAM17 inhibitory antibody, MEDI3622, which induces tumor regression or stasis in many EGFR-dependent tumor models. The inhibitory activity of MEDI3622 correlated with EGFR activity both in a series of tumor models across several indications as well in as a focused set of head and neck patient-derived xenograft models. The antitumor activity of MEDI3622 was superior to that of EGFR/HER pathway inhibitors in the OE21 esophageal model and the COLO205 colorectal model suggesting additional activity outside of the EGFR pathway. Combination of MEDI3622 and cetuximab in the OE21 model was additive and eradicated tumors. Proteomics analysis revealed novel ADAM17 substrates that function outside of the HER pathways and may contribute toward the antitumor activity of the monoclonal antibody.


Subject(s)
ADAM Proteins/antagonists & inhibitors , Antibodies, Monoclonal/pharmacology , ErbB Receptors/antagonists & inhibitors , Neoplasms/drug therapy , Signal Transduction/drug effects , Xenograft Model Antitumor Assays , ADAM Proteins/immunology , ADAM Proteins/metabolism , ADAM17 Protein , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/pharmacokinetics , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Blotting, Western , Cell Line, Tumor , Cell Proliferation/drug effects , Cetuximab/administration & dosage , Cetuximab/pharmacology , Dose-Response Relationship, Drug , Drug Synergism , ErbB Receptors/metabolism , Female , HCT116 Cells , HT29 Cells , Humans , Mice, Inbred DBA , Mice, Nude , Neoplasms/immunology , Neoplasms/metabolism , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...