Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Materials (Basel) ; 17(2)2024 Jan 14.
Article in English | MEDLINE | ID: mdl-38255591

ABSTRACT

This work aims to obtain recycled carbon fibre and develop an application for this new material. The carbon fibres were obtained by recycling aerospace prepreg waste via the pyrolysis process. The recycled fibres were combined with an Araldite LH5052/Aradur LY5053 epoxy resin/hardener system using manual lay-up and vacuum bagging processes. For comparison, the same resin/hardener system was used to produce a composite using commercial carbon fibre. The recycled and commercial composites were subjected to flexural, tensile and Mode I testing. Fracture aspects were analysed via scanning electron microscopy (SEM). The pyrolysis process did not affect the fibre surface as no degradation was observed. The fracture aspect showed a mixture of failure in the recycled composite laminate and interlaminar/translaminar failure near the surface of the commercial composite caused by flexural stress. Flexural and tensile tests showed a loss of mechanical strength due to the recycling process, but the tensile values were twice as high. The sand ladder platform was the project chosen for the development of a product made with recycled carbon fibres. The product was manufactured using the same manufacturing process as the specimens and tested with a 1243 kg car. The method chosen to design, manufacture and test the prototype sand ladder platform made of recycled carbon fibre was appropriate and gave satisfactory results in terms of high mechanical strength to bending and ease of use.

SELECTION OF CITATIONS
SEARCH DETAIL