Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 13(34): 24150-24161, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37583918

ABSTRACT

Ambient desorption/ionization mass spectrometry (ADI-MS) has been widely used for direct analysis of real samples without sample preparation or separation. Studies on the quantification of low molecular weight compounds in complex matrices with ADI-MS remain scarce. In this paper, we report the application of surface-assisted flowing atmospheric-pressure afterglow mass spectrometry (SA-FAPA-MS) for fast qualitative screening of electronic cigarette liquid (e-liquids) ingredients and direct quantification of nicotine. The quantification approach is rapid, uses a deuterated D4-nicotine standard spike, and does not require a preceding chromatography step or other methods to remove the complex sample matrix. Selected e-liquids were directly applied on thin-layer chromatography (TLC) plate surfaces (normal phase (NP) silica, reversed phase (RP) modified silica, cyano (CN) modified silica, and dimethyl (RP2) modified silica) after dilution and internal standard spiking. The plates served purely as sample carriers and no analyte separation was performed. Promising qualitative results were obtained, demonstrating the ability to detect nicotine alkaloids using this approach and the ability to differentiate e-liquids based on their flavor variations. In addition, dimethyl- (RP2-) and cyano-modified (CN-) silica surfaces were selected for quantification based on performance results of previous studies. It was shown that results were in high accordance with high-performance liquid chromatography (HPLC) experiments with lowest deviations <3% on dimethyl surfaces. Additional quantitative experiments including a certified reference material achieved equally satisfying results with lowest deviations of -1.1% from the certified nicotine content. For nicotine, detection limits down to the fmol range (96 fmol on CN and 20 fmol on RP2) were obtained. A detailed comparison of glass surfaces with functionalized surfaces showed that the functionalized surfaces were superior in terms of sample application reproducibility, mass spectra quality, sensitivity, and information density. Thus, functionalized thin-layer surfaces are considered promising tools for both qualitative and quantitative ADI-MS analysis of complex samples.

2.
Appl Spectrosc ; 77(8): 928-939, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37151022

ABSTRACT

Ambient desorption/ionization mass spectrometry (ADI-MS) has been broadly applied to accomplish direct analysis without sample preparation or separation. However, quantification capabilities and analytical performance are sometimes limited. Here, we report signal enhancement effects and improved quantification capabilities in plasma-based ADI-MS, when a flowing atmospheric-pressure afterglow (FAPA) source is used to probe analytes on tailored thin-layer chromatography (TLC) plates. It was found that quantitative results could be achieved when the TLC plate merely served as a sampling plate without a preceding separation step. Specifically, the dynamic response of caffeine, nicotine, acetaminophen, and progesterone was investigated with FAPA-MS on a variety of different TLC surfaces (normal-phase silica, reversed-phase-modified silica, cyano [CN]-modified silica, and dimethyl [RP2]-modified silica). All analytes were studied as single-analyte standards and in a multianalyte mixture to evaluate the effect of sample plates and sample matrix on analytical performance and competitive ionization processes. Overall, dimethyl (RP2)- and CN-modified silica resulted in superior performance compared to other TLC materials. After careful optimization and without the use of internal standards, linear ranges of five orders of magnitude were accessible for caffeine and nicotine. Limits of detection down to femtomole amounts of analyte were achieved. Quantitation limits using RP2-TLC and FAPA-MS were 0.062, 0.062l, 0.31, and 14 pmol for caffeine, nicotine, progesterone, and acetaminophen, respectively. Interestingly, the presence of nicotine at relatively high amounts reduced the signal of the other analytes, an observation that was found to correlate with the differences in the enthalpy of vaporization (ΔHvap) and proton affinity. To prove the quantitative capabilities, nicotine quantification in a real matrix-heavy e-liquid sample was demonstrated using an isotopically labeled standard. The use of TLC-based surfaces with FAPA-MS can aid in the direct and quantitative mass spectrometric investigation of complex mixtures.


Subject(s)
Caffeine , Nicotine , Caffeine/analysis , Acetaminophen , Progesterone , Mass Spectrometry/methods
3.
Chemistry ; 29(9): e202203203, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36398899

ABSTRACT

Two representative organic photoreactions, namely a bimolecular photocycloaddition and a monomolecular photorearrangement, are presented that are accelerated when the reaction is performed "on-water", that is, at the water-substrate interface with no solvation of the reaction components. According to the established models of ground-state reactions "on-water", the enhanced efficiency of the photoreactions is explained by hydrophobic effects (Paternó-Büchi reaction) or specific hydrogen bonding (di-π-methane rearrangement) at the water-substrate interface that decrease the energy of the respective transition state. These results point to the potential of this approach to conduct photoreactions more efficiently in an ecologically favorable medium.

4.
Anal Bioanal Chem ; 414(15): 4481-4495, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35441859

ABSTRACT

Ambient desorption/ionization mass spectrometry (ADI-MS) is widely used as a rapid screening tool of samples in their native state without sample preparation. While analysis times are much less than 1 min per sample, one challenge of ADI-MS is the possibility to perform quantitative analysis of analytes in complex matrices. Typically, the goal is to probe a variety of different analytes in a complex matrix from a solid, liquid, or otherwise uncharacterized surface in the open air in front of the MS inlet. In this study, it is demonstrated that a carefully selected surface for analyte spot sampling and co-deposited isotopically labeled standards both significantly improve the capabilities of flowing atmospheric-pressure afterglow (FAPA) high-resolution (HR) MS for direct quantitative analysis. Specifically, a systematic study of different surfaces (glass, steel mesh, high-performance thin-layer chromatography (HPTLC) stationary phases including silica, reversed-phase (RP)-modified silica, and cyano (CN)-modified silica) and their suitability for spot sampling with FAPA-MS was performed. A set of different caffeine-containing standards and beverages (Red Bull, Coca-Cola, coffee, and black tea) was deposited on the surfaces and direct FAPA-HR-MS analysis of caffeine was performed using internal calibration with co-deposited 13C3-caffeine. For TLC surfaces, it was demonstrated that quantitative results could be achieved with the matrix and concomitants present and that a preceding chromatographic separation was not mandatory for this application. In addition, the use of a CN-HPTLC surface resulted in a significantly more intense caffeine signal in the beverage samples compared to the other surfaces studied, with the highest increase compared to the silica (200-fold higher) and the lowest increase compared to the steel mesh (30-fold higher). The utilization of TLC-based surfaces as sample carriers is considered an attractive tool in the ADI-MS toolbox for fast and efficient mass spectrometric investigations of complex samples without time-consuming sample preparation.


Subject(s)
Beverages , Caffeine , Chromatography, Thin Layer , Mass Spectrometry , Silicon Dioxide , Steel
5.
Anal Bioanal Chem ; 411(23): 6213-6225, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31317240

ABSTRACT

Thin-layer chromatography (TLC) was interfaced to high-resolution mass spectrometry (MS) using a flowing atmospheric-pressure afterglow (FAPA) ambient desorption/ionization source. The influence of different TLC stationary phases on the mass spectral signal response and mass spectral image quality in FAPA-MS was carefully investigated. Specifically, a mixture of selected analgesics (acetaminophen), alkaloids (nicotine and caffeine), and steroids (cortisone) was deposited on different stationary phases (silica plates, RP-modified silica plates, CN-modified silica plates, DIOL-modified silica plates, and NH2-modified silica plates), and TLC plates with different thickness (100, 200, 250, 500, 1000, 2000 µm) of the stationary phase. After analyte separation, mass spectral imaging was performed of the complete TLC plate via FAPA-MS and the detected ion abundance was compared. It was found that TLC plates with larger particle sizes (10-12 µm) and thicker stationary phase layers (e.g., 1000 µm and 2000 µm) led to higher signals (protonated molecules) compared to smaller particles sizes (6-8 µm) and thinner stationary phases (e.g., 100 µm and 200 µm). Instrumental detection limits in the low ng-range/band were determined for TLC-FAPA-MS of caffeine from RP-modified TLC silica plates. Lastly, a quantitative TLC-FAPA-MS method using stable isotope dilution analysis was developed and applied to the quantification of caffeine in energy drinks. Graphical abstract.

SELECTION OF CITATIONS
SEARCH DETAIL
...