Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
mSystems ; 6(1)2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33563789

ABSTRACT

Validated methods are needed to detect spoilage microbes present in low numbers in foods and ingredients prior to defect onset. We applied propidium monoazide combined with 16S rRNA gene sequencing, qPCR, isolate identification, and pilot-scale cheese making to identify the microorganisms that cause slit defects in industrially produced Cheddar cheese. To investigate milk as the source of spoilage microbes, bacterial composition in milk was measured immediately before and after high-temperature, short-time (HTST) pasteurization over 10-h periods on 10 days and in the resulting cheese blocks. Besides HTST pasteurization-induced changes to milk microbiota composition, a significant increase in numbers of viable bacteria was observed over the 10-h run times of the pasteurizer, including 68-fold-higher numbers of the genus Thermus However, Thermus was not associated with slit development. Milk used to make cheese which developed slits instead contained a lower number of total bacteria, higher alpha diversity, and higher proportions of Lactobacillus, Bacillus, Brevibacillus, and Clostridium Only Lactobacillus proportions were significantly increased during cheese aging, and Limosilactobacillus (Lactobacillus) fermentum, in particular, was enriched in slit-containing cheeses and the pre- and post-HTST-pasteurization milk used to make them. Pilot-scale cheeses developed slits when inoculated with strains of L. fermentum, other heterofermentative lactic acid bacteria, or uncultured bacterial consortia from slit-associated pasteurized milk, thereby confirming that low-abundance taxa in milk can negatively affect cheese quality. The likelihood that certain microorganisms in milk cause slit defects can be predicted based on comparisons of the bacteria present in the milk used for cheese manufacture.IMPORTANCE Food production involves numerous control points for microorganisms to ensure quality and safety. These control points (e.g., pasteurization) are difficult to develop for fermented foods wherein some microbial contaminants are also expected to provide positive contributions to the final product and spoilage microbes may constitute only a small proportion of all microorganisms present. We showed that microbial composition assessments with 16S rRNA marker gene DNA sequencing are sufficiently robust to detect very-low-abundance bacterial taxa responsible for a major but sporadic Cheddar cheese spoilage defect. Bacterial composition in the (pasteurized) milk and cheese was associated with slit defect development. The application of Koch's postulates showed that individual bacterial isolates as well as uncultured bacterial consortia were sufficient to cause slits, even when present in very low numbers. This approach may be useful for detection and control of low-abundance spoilage microorganisms present in other foods.

2.
mBio ; 7(4)2016 08 23.
Article in English | MEDLINE | ID: mdl-27555305

ABSTRACT

UNLABELLED: Currently, the bacterial composition of raw milk in tanker trucks and the outcomes of transfer and storage of that milk at commercial processing facilities are not well understood. We set out to identify the bacteria in raw milk collected for large-scale dairy product manufacturing. Raw bovine milk samples from 899 tanker trucks arriving at two dairy processors in San Joaquin Valley of California during three seasons (spring, summer, and fall) were analyzed by community 16S rRNA gene sequencing. This analysis revealed highly diverse bacterial populations, which exhibited seasonal differences. Raw milk collected in the spring contained the most diverse bacterial communities, with the highest total cell numbers and highest proportions being those of Actinobacteria Even with this complexity, a core microbiota was present, consisting of 29 taxonomic groups and high proportions of Streptococcus and Staphylococcus and unidentified members of Clostridiales Milk samples were also collected from five large-volume silos and from 13 to 25 tankers whose contents were unloaded into each of them during 2 days in the summer. Transfer of the milk to storage silos resulted in two community types. One group of silos contained a high proportion of Streptococcus spp. and was similar in that respect to the tankers that filled them. The community found in the other group of silos was distinct and dominated by Acinetobacter Overall, despite highly diverse tanker milk community structures, distinct milk bacterial communities were selected within the processing facility environment. This knowledge can inform the development of new sanitation procedures and process controls to ensure the consistent production of safe and high-quality dairy products on a global scale. IMPORTANCE: Raw milk harbors diverse bacteria that are crucial determinants of the quality and safety of fluid milk and (fermented) dairy products. These bacteria enter farm milk during transport, storage, and processing. Although pathogens are destroyed by pasteurization, not all bacteria and their associated enzymes are eliminated. Our comprehensive analyses of the bacterial composition of raw milk upon arrival and shortly after storage at major dairy processors showed that the communities of milk microbiota are highly diverse. Even with these differences, there was a core microbiota that exhibited distinct seasonal trends. Remarkably, the effects of the processing facility outweighed those of the raw milk microbiome and the microbial composition changed distinctly within some but not all silos within a short time after transfer. This knowledge can be used to inform cleaning and sanitation procedures as well as to enable predictions of the microbial communities in raw milk that result in either high-quality or defective products.


Subject(s)
Bacteria/classification , Bacteria/genetics , Biota , Dairying/instrumentation , Milk/microbiology , Animals , California , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Seasons , Sequence Analysis, DNA
3.
BMC Genomics ; 13: 533, 2012 Oct 05.
Article in English | MEDLINE | ID: mdl-23035691

ABSTRACT

BACKGROUND: The broad ecological distribution of L. casei makes it an insightful subject for research on genome evolution and lifestyle adaptation. To explore evolutionary mechanisms that determine genomic diversity of L. casei, we performed comparative analysis of 17 L. casei genomes representing strains collected from dairy, plant, and human sources. RESULTS: Differences in L. casei genome inventory revealed an open pan-genome comprised of 1,715 core and 4,220 accessory genes. Extrapolation of pan-genome data indicates L. casei has a supragenome approximately 3.2 times larger than the average genome of individual strains. Evidence suggests horizontal gene transfer from other bacterial species, particularly lactobacilli, has been important in adaptation of L. casei to new habitats and lifestyles, but evolution of dairy niche specialists also appears to involve gene decay. CONCLUSIONS: Genome diversity in L. casei has evolved through gene acquisition and decay. Acquisition of foreign genomic islands likely confers a fitness benefit in specific habitats, notably plant-associated niches. Loss of unnecessary ancestral traits in strains collected from bacterial-ripened cheeses supports the hypothesis that gene decay contributes to enhanced fitness in that niche. This study gives the first evidence for a L. casei supragenome and provides valuable insights into mechanisms for genome evolution and lifestyle adaptation of this ecologically flexible and industrially important lactic acid bacterium. Additionally, our data confirm the Distributed Genome Hypothesis extends to non-pathogenic, ecologically flexible species like L. casei.


Subject(s)
Adaptation, Physiological/genetics , Biological Evolution , Genome, Bacterial , Lacticaseibacillus casei/genetics , Cluster Analysis , Gene Transfer, Horizontal , Genomic Islands , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...