Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 12(10): 2516-2522, 2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33667339

ABSTRACT

Electrogenerated chemiluminescence (ECL) microscopy shows promise as a technique for mapping chemical reactions on single nanoparticles. The technique's spatial resolution is limited by the quantum yield of the emission and the diffusive nature of the ECL process. To improve signal intensity, ECL dyes have been coupled with plasmonic nanoparticles, which act as nanoantennas. Here, we characterize the optical properties of hexagonal arrays of gold nanodisks and how they impact the enhancement of ECL from the coreaction of tris(2,2'-bipyridyl)dichlororuthenium(II) hexahydrate and tripropylamine. We find that varying the lattice spacing results in a 23-fold enhancement of ECL intensity because of increased dye-array near-field coupling as modeled using finite element method simulations.

2.
J Phys Chem C Nanomater Interfaces ; 124(26): 14287-14296, 2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32944118

ABSTRACT

Aggregates or clusters of primary metal nanoparticles in solution are one of the most widely used platforms for surface-enhanced Raman scattering (SERS) measurements because these nanostructures induce strong electric fields or hot spots between nanoparticles and as a result, SERS signals. While SERS signals are observed to vary with time, the impact of cluster formation mechanisms on SERS activity has been less studied. Herein, variations in time-dependent SERS signals from gold nanosphere clusters and aggregates are considered both experimentally and theoretically. An excess of the Raman reporter molecule, 2-naphthalenethiol, is added to induce rapid monolayer formation on the nanoparticles. In this diffusion-limited regime, clusters form as loosely packed fractals and the ligands help control nanoparticle separation distances once clusters form. By systematically varying gold nanosphere concentration and diameter, the reaction kinetics and dynamics associated with cluster formation can be studied. Dynamic light scattering (DLS), localized surface plasmon resonance (LSPR) spectroscopy, and SERS reveal that aggregates form reproducibly in the diffusion-limited regime and follow a self-limiting cluster size model. The rate of cluster formation during this same reaction window is explained using interaction pair potential calculations and collision theory. Diffusion-limited reaction conditions are limited by sedimentation only if sedimentation velocities exceed diffusion velocities of the clusters or via plasmon damping through radiation or scattering losses. These radiative loses are only significant when the extinction magnitude near the excitation wavelength exceeds 1.5. By evaluating these responses as a function of both nanosphere radius and concentration, time-dependent SERS signals are revealed to follow collision theory and be predictable when both nanosphere concentration and size are considered.

3.
J Chem Phys ; 151(14): 144712, 2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31615232

ABSTRACT

Electrogenerated chemiluminescence (ECL) is a promising technique for low concentration molecular detection. To improve the detection limit, plasmonic nanoparticles have been proposed as signal boosting antennas to amplify ECL. Previous ensemble studies have hinted that spectral overlap between the nanoparticle antenna and the ECL emitter may play a role in signal enhancement. Ensemble spectroscopy, however, cannot resolve heterogeneities arising from colloidal nanoparticle size and shape distributions, leading to an incomplete picture of the impact of spectral overlap. Here, we isolate the effect of nanoparticle-emitter spectral overlap for a model ECL system, coreaction of tris(2,2'-bipyridyl)dichlororuthenium(ii) hexahydrate and tripropylamine, at the single-particle level while minimizing other factors influencing ECL intensities. We found a 10-fold enhancement of ECL among 952 gold nanoparticles. This signal enhancement is attributed exclusively to spectral overlap between the nanoparticle and the emitter. Our study provides new mechanistic insight into plasmonic enhancement of ECL, creating opportunities for low concentration ECL sensing.


Subject(s)
Metal Nanoparticles/chemistry , Organometallic Compounds/chemistry , Propylamines/chemistry , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Electrodes , Gold/chemistry , Gold/radiation effects , Light , Luminescence , Luminescent Measurements/methods , Metal Nanoparticles/radiation effects , Organometallic Compounds/radiation effects
5.
J Phys Chem Lett ; 8(12): 2681-2688, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28534621

ABSTRACT

We report a study of the shape-dependent spectral response of the gold nanoparticle surface plasmon resonance at various electron densities to provide mechanistic insight into the role of capacitive charging, a topic of some debate. We demonstrate a morphology-dependent spectral response for gold nanoparticles due to capacitive charging using single-particle spectroscopy in an inert electrochemical environment. A decrease in plasmon energy and increase in spectral width for gold nanospheres and nanorods was observed as the electron density was tuned through a potential window of -0.3 to 0.1 V. The combined observations could not be explained by existing theories. A new quantum theory for charging based on the random phase approximation was developed. Additionally, the redox reaction of gold oxide formation was probed using single-particle plasmon voltammetry to reproduce the reduction peak from the bulk cyclic voltammetry. These results deepen our understanding of the relationship between optical and electronic properties in plasmonic nanoparticles and provide insight toward their potential applications in directed electrocatalysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...