Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 364: 130198, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34256277

ABSTRACT

This study was designed to investigate the rate and extent of urinary excretion of cocoa phenolic metabolites after human intake using metabolomics approach. In this context, a feeding trial was conducted where urine samples were collected at different time points over 48-h period. Several biomarkers were highlighted in LC-MS based chemometrics using principal component (PCA) and partial least squares discriminant analysis (PLS-DA), which revealed the presence of both epicatechin and gut microbial phenyl-γ-valerolactones (PVLs) conjugated analogues. The presences of these metabolites segregated and grouped the samples based on cocoa and non-cocoa ingestion. Furthermore, semi quantification of major bioavailable metabolites was performed to determine the interindividual differences and assess the relative bioavailability of cocoa compounds in the human body. Our approach presented here is unique in displaying a combination of LC-MS based chemometrics visualization strategies, which revealed and identified significant biomarkers that could reduce the problems associated with data screening complexity.


Subject(s)
Cacao , Chocolate , Chocolate/analysis , Chromatography, Liquid , Humans , Metabolomics , Tandem Mass Spectrometry
2.
Food Res Int ; 132: 109119, 2020 06.
Article in English | MEDLINE | ID: mdl-32331646

ABSTRACT

Dietary phenolic compounds are often transformed by gut microbiota prior to absorption. This transformation may modify their structures, producing novel gut flora metabolites associated with numerous health benefits. Traditional mass spectrometry (MS) based approaches for assessing dietary exposure of cocotea (cocoa, coffee and tea) products provided very little information about the modification and fate of dietary phenolics after ingestion, mainly due to limitation of complex sample nature and their data analyses. Mass spectrometry techniques are well-suited to a high-throughput characterization of natural products, however, analyzing MS based data of complex biological matrix is still considered a challenge. In order to overcome such limitations and simplify the analysis of complex MS data, a cocotea based human trial was conducted where MS based molecular networking approach was implemented. To demonstrate the utility of this approach in one of the specific cocotea diets, we have applied it to a diverse collection of human (n = 15) urine samples, who consumed cocoa rich in polyphenols over a 48-h period. This approach illustrated the power of the new strategy, allowing the rapid identification of new analogues of cocoa metabolites after human consumption. Analysis of human urine samples after cocoa consumption revealed (by assignment of unknown metabolites based on the network similarities) that monomeric flavanols are mainly absorbed and transformed directly into their glucuronide and sulfated moieties. Subsequently, the hydroxy and methoxy phenyl-g-velerolactone as well as their smaller metabolites (such as hydroxyphenyl valeric acids, hydroxy and methoxy phenyl propionic acids and their derivates) are indicative of bacterial metabolism of cocoa major flavanols. For the first time, our study exemplifies and highlight the implementation of MS based molecular networking approach in illustrating the tracking of various structural motifs of ingested cocoa phenolics in human based study.


Subject(s)
Cacao/chemistry , Chocolate/analysis , Chromatography, Liquid/methods , Phenols/urine , Tandem Mass Spectrometry/methods , Biological Availability , Diet , Gastrointestinal Microbiome , Humans , Polyphenols/analysis
3.
Environ Sci Technol ; 40(11): 3623-33, 2006 Jun 01.
Article in English | MEDLINE | ID: mdl-16786703

ABSTRACT

A bench-scale study was performed to evaluate the enhancement of tetrachloroethene (PCE) dissolution from a dense nonaqueous phase liquid (DNAPL) source zone due to reductive dechlorination. The study was conducted in a pair of two-dimensional bench-scale aquifer systems using soil and groundwater from Dover Air Force Base, DE. After establishment of PCE source zones in each aquifer system, one was biostimulated (addition of electron donor) while the other was biostimulated and then bioaugmented with the KB1 dechlorinating culture. Biostimulation resulted in the growth of iron-reducing bacteria (Geobacter) in both systems as a result of the high iron content of the Dover soil. After prolonged electron donor addition methanogenesis dominated, but no dechlorination was observed. Following bioaugmentation of one system, dechlorination to ethene was achieved, coincident with growth of introduced Dehalococcoides and other microbes in the vicinity and downgradient of the PCE DNAPL (detected using DGGE and qPCR). Dechlorination was not detected in the nonbioaugmented system over the course of the study, indicating that the native microbial community, although containing a member of the Dehalococcoides group, was not able to dechlorinate PCE. Over 890 days, 65% of the initial emplaced PCE was removed in the bioaugmented, dechlorinating system, in comparison to 39% removal by dissolution from the nondechlorinating system. The maximum total ethenes concentration (3 mM) in the bioaugmented system occurred approximately 100 days after bioaugmentation, indicating that there was at least a 3-fold enhancement of PCE dissolution atthis time. Removal rates decreased substantially beyond this time, particularly during the last 200 days of the study, when the maximum concentrations of total ethenes were only about 0.5 mM. However, PCE removal rates in the dechlorinating system remained more than twice the removal rates of the nondechlorinating system. The reductions in removal rates over time are attributed to both a shrinking DNAPL source area, and reduced flow through the DNAPL source area due to bioclogging and pore blockage from methane gas generation.


Subject(s)
Ecosystem , Geobacter/metabolism , Soil Microbiology , Tetrachloroethylene/metabolism , Biodegradation, Environmental , Biomass , Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Environmental Pollutants/analysis , Ethylenes/analysis , Ethylenes/chemistry , Geobacter/growth & development , Methane/analysis , Oxidation-Reduction , Tetrachloroethylene/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...