Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Development ; 149(18)2022 09 15.
Article in English | MEDLINE | ID: mdl-36125129

ABSTRACT

The cadherin-catenin complex (CCC) is central to embryonic development and tissue repair, yet how CCC binding partners function alongside core CCC components remains poorly understood. Here, we establish a previously unappreciated role for an evolutionarily conserved protein, the slit-robo GTPase-activating protein SRGP-1/srGAP, in cadherin-dependent morphogenetic processes in the Caenorhabditis elegans embryo. SRGP-1 binds to the M domain of the core CCC component, HMP-1/α-catenin, via its C terminus. The SRGP-1 C terminus is sufficient to target it to adherens junctions, but only during later embryonic morphogenesis, when junctional tension is known to increase. Surprisingly, mutations that disrupt stabilizing salt bridges in the M domain block this recruitment. Loss of SRGP-1 leads to an increase in mobility and decrease of junctional HMP-1. In sensitized genetic backgrounds with weakened adherens junctions, loss of SRGP-1 leads to late embryonic failure. Rescue of these phenotypes requires the C terminus of SRGP-1 but also other domains of the protein. Taken together, these data establish a role for an srGAP in stabilizing and organizing the CCC during epithelial morphogenesis by binding to a partially closed conformation of α-catenin at junctions.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Cadherins/genetics , Cadherins/metabolism , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , GTPase-Activating Proteins/metabolism , Morphogenesis/genetics , alpha Catenin/genetics , alpha Catenin/metabolism
2.
J Biol Chem ; 296: 100582, 2021.
Article in English | MEDLINE | ID: mdl-33771561

ABSTRACT

α-Catenin binds directly to ß-catenin and connects the cadherin-catenin complex to the actin cytoskeleton. Tension regulates α-catenin conformation. Actomyosin-generated force stretches the middle (M)-region to relieve autoinhibition and reveal a binding site for the actin-binding protein vinculin. It is not known whether the intramolecular interactions that regulate epithelial (αE)-catenin binding are conserved across the α-catenin family. Here, we describe the biochemical properties of testes (αT)-catenin, an α-catenin isoform critical for cardiac function and how intramolecular interactions regulate vinculin-binding autoinhibition. Isothermal titration calorimetry showed that αT-catenin binds the ß-catenin-N-cadherin complex with a similar low nanomolar affinity to that of αE-catenin. Limited proteolysis revealed that the αT-catenin M-region adopts a more open conformation than αE-catenin. The αT-catenin M-region binds the vinculin N-terminus with low nanomolar affinity, indicating that the isolated αT-catenin M-region is not autoinhibited and thereby distinct from αE-catenin. However, the αT-catenin head (N- and M-regions) binds vinculin 1000-fold more weakly (low micromolar affinity), indicating that the N-terminus regulates the M-region binding to vinculin. In cells, αT-catenin recruitment of vinculin to cell-cell contacts requires the actin-binding domain and actomyosin-generated tension, indicating that force regulates vinculin binding. Together, our results show that the αT-catenin N-terminus is required to maintain M-region autoinhibition and modulate vinculin binding. We postulate that the unique molecular properties of αT-catenin allow it to function as a scaffold for building specific adhesion complexes.


Subject(s)
Vinculin/metabolism , alpha Catenin/metabolism , Actin Cytoskeleton/metabolism , Binding Sites , Myocardium/metabolism , Protein Binding , Proteolysis , alpha Catenin/chemistry
3.
J Cell Sci ; 132(3)2019 02 11.
Article in English | MEDLINE | ID: mdl-30630894

ABSTRACT

The junctional complexes that couple cardiomyocytes must transmit the mechanical forces of contraction while maintaining adhesive homeostasis. The adherens junction (AJ) connects the actomyosin networks of neighboring cardiomyocytes and is required for proper heart function. Yet little is known about the molecular composition of the cardiomyocyte AJ or how it is organized to function under mechanical load. Here, we define the architecture, dynamics and proteome of the cardiomyocyte AJ. Mouse neonatal cardiomyocytes assemble stable AJs along intercellular contacts with organizational and structural hallmarks similar to mature contacts. We combine quantitative mass spectrometry with proximity labeling to identify the N-cadherin (CDH2) interactome. We define over 350 proteins in this interactome, nearly 200 of which are unique to CDH2 and not part of the E-cadherin (CDH1) interactome. CDH2-specific interactors comprise primarily adaptor and adhesion proteins that promote junction specialization. Our results provide novel insight into the cardiomyocyte AJ and offer a proteomic atlas for defining the molecular complexes that regulate cardiomyocyte intercellular adhesion. This article has an associated First Person interview with the first authors of the paper.


Subject(s)
Actin Cytoskeleton/metabolism , Actomyosin/genetics , Adherens Junctions/metabolism , Cadherins/genetics , Mechanotransduction, Cellular , Myocytes, Cardiac/metabolism , Actin Cytoskeleton/ultrastructure , Actomyosin/metabolism , Adherens Junctions/ultrastructure , Animals , Animals, Newborn , Cadherins/metabolism , Cell Adhesion , Cell Communication , Gene Expression Regulation , Gene Ontology , Mice , Molecular Sequence Annotation , Myocytes, Cardiac/ultrastructure , Primary Cell Culture , Protein Binding , Protein Interaction Mapping , Proteomics/methods
4.
J Vis Exp ; (123)2017 05 18.
Article in English | MEDLINE | ID: mdl-28570520

ABSTRACT

Filamentous actin (F-actin) organization within cells is regulated by a large number of actin-binding proteins that control actin nucleation, growth, cross-linking and/or disassembly. This protocol describes a technique - the actin co-sedimentation, or pelleting, assay - to determine whether a protein or protein domain binds F-actin and to measure the affinity of the interaction (i.e., the dissociation equilibrium constant). In this technique, a protein of interest is first incubated with F-actin in solution. Then, differential centrifugation is used to sediment the actin filaments, and the pelleted material is analyzed by SDS-PAGE. If the protein of interest binds F-actin, it will co-sediment with the actin filaments. The products of the binding reaction (i.e., F-actin and the protein of interest) can be quantified to determine the affinity of the interaction. The actin pelleting assay is a straightforward technique for determining if a protein of interest binds F-actin and for assessing how changes to that protein, such as ligand binding, affect its interaction with F-actin.


Subject(s)
Actin Cytoskeleton/chemistry , Actins/metabolism , Microfilament Proteins/metabolism , Protein Binding
5.
J Biol Chem ; 292(17): 7077-7086, 2017 04 28.
Article in English | MEDLINE | ID: mdl-28298447

ABSTRACT

Intercellular epithelial junctions formed by classical cadherins, ß-catenin, and the actin-binding protein α-catenin link the actin cytoskeletons of adjacent cells into a structural continuum. These assemblies transmit forces through the tissue and respond to intracellular and extracellular signals. However, the mechanisms of junctional assembly and regulation are poorly understood. Studies of cadherin-catenin assembly in a number of metazoans have revealed both similarities and unexpected differences in the biochemical properties of the cadherin·catenin complex that likely reflect the developmental and environmental requirements of different tissues and organisms. Here, we report the structural and biochemical characterization of HMP-1, the Caenorhabditis elegans α-catenin homolog, and compare it with mammalian α-catenin. HMP-1 shares overall similarity in structure and actin-binding properties, but displayed differences in conformational flexibility and allosteric regulation from mammalian α-catenin. HMP-1 bound filamentous actin with an affinity in the single micromolar range, even when complexed with the ß-catenin homolog HMP-2 or when present in a complex of HMP-2 and the cadherin homolog HMR-1, indicating that HMP-1 binding to F-actin is not allosterically regulated by the HMP-2·HMR-1 complex. The middle (i.e. M) domain of HMP-1 appeared to be less conformationally flexible than mammalian α-catenin, which may underlie the dampened effect of HMP-2 binding on HMP-1 actin-binding activity compared with that of the mammalian homolog. In conclusion, our data indicate that HMP-1 constitutively binds ß-catenin and F-actin, and although the overall structure and function of HMP-1 and related α-catenins are similar, the vertebrate proteins appear to be under more complex conformational regulation.


Subject(s)
Actins/chemistry , Cadherins/chemistry , Caenorhabditis elegans Proteins/chemistry , Cytoskeletal Proteins/chemistry , alpha Catenin/chemistry , beta Catenin/chemistry , Allosteric Site , Animals , Caenorhabditis elegans , Cell Adhesion , Crystallography, X-Ray , Glutathione Transferase/metabolism , Molecular Dynamics Simulation , Protein Binding , Protein Domains , Rabbits , Structure-Activity Relationship , Vinculin/chemistry
6.
J Biol Chem ; 291(30): 15687-99, 2016 07 22.
Article in English | MEDLINE | ID: mdl-27231342

ABSTRACT

α-Catenin is the primary link between the cadherin·catenin complex and the actin cytoskeleton. Mammalian αE-catenin is allosterically regulated: the monomer binds the ß-catenin·cadherin complex, whereas the homodimer does not bind ß-catenin but interacts with F-actin. As part of the cadherin·catenin complex, αE-catenin requires force to bind F-actin strongly. It is not known whether these properties are conserved across the mammalian α-catenin family. Here we show that αT (testes)-catenin, a protein unique to amniotes that is expressed predominantly in the heart, is a constitutive actin-binding α-catenin. We demonstrate that αT-catenin is primarily a monomer in solution and that αT-catenin monomer binds F-actin in cosedimentation assays as strongly as αE-catenin homodimer. The ß-catenin·αT-catenin heterocomplex also binds F-actin with high affinity unlike the ß-catenin·αE-catenin complex, indicating that αT-catenin can directly link the cadherin·catenin complex to the actin cytoskeleton. Finally, we show that a mutation in αT-catenin linked to arrhythmogenic right ventricular cardiomyopathy, V94D, promotes homodimerization, blocks ß-catenin binding, and in cardiomyocytes disrupts localization at cell-cell contacts. Together, our data demonstrate that αT-catenin is a constitutively active actin-binding protein that can physically couple the cadherin·catenin complex to F-actin in the absence of tension. We speculate that these properties are optimized to meet the demands of cardiomyocyte adhesion.


Subject(s)
Actin Cytoskeleton/metabolism , Actins/metabolism , Cadherins/metabolism , Hypertrophy, Right Ventricular/metabolism , Multiprotein Complexes/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , alpha Catenin/metabolism , Actin Cytoskeleton/chemistry , Actin Cytoskeleton/genetics , Actins/chemistry , Actins/genetics , Animals , Cadherins/chemistry , Cadherins/genetics , Hypertrophy, Right Ventricular/genetics , Mice , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Myocardium/pathology , Myocytes, Cardiac/pathology , Protein Binding , alpha Catenin/chemistry , alpha Catenin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...