Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 265(Pt A): 114695, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32806416

ABSTRACT

Mining causes extensive damage to aquatic ecosystems via acidification, heavy metal pollution, sediment loading, and Ca decline. Yet little is known about the effects of mining on freshwater systems in the Southern Hemisphere. A case in point is the region of western Tasmania, Australia, an area extensively mined in the 19th century, resulting in severe environmental contamination. In order to assess the impacts of mining on aquatic ecosystems in this region, we present a multiproxy investigation of the lacustrine sediments from Owen Tarn, Tasmania. This study includes a combination of radiometric dating (14C and 210Pb), sediment geochemistry (XRF and ICP-MS), pollen, charcoal and diatoms. Generalised additive mixed models were used to test if changes in the aquatic ecosystem can be explained by other covariates. Results from this record found four key impact phases: (1) Pre-mining, (2) Early mining, (3) Intense mining, and (4) Post-mining. Before mining, low heavy metal concentrations, slow sedimentation, low fire activity, and high biomass indicate pre-impact conditions. The aquatic environment at this time was oligotrophic and dystrophic with sufficient light availability, typical of western Tasmanian lakes during the Holocene. Prosperous mining resulted in increased burning, a decrease in landscape biomass and an increase in sedimentation resulting in decreased light availability of the aquatic environment. Extensive mining at Mount Lyell in the 1930s resulted in peak heavy metal pollutants (Pb, Cu and Co) and a further increase in inorganic inputs resulted in a disturbed low light lake environment (dominated by Hantzschia amphioxys and Pinnularia divergentissima). Following the closure of the Mount Lyell Co. in 1994 CE, Ca declined to below pre-mining levels resulting in a new diatom assemblage and deformed diatom valves. Therefore, the Owen Tarn record demonstrates severe sediment pollution and continued impacts of mining long after mining has stopped at Mt. Lyell Mining Co.


Subject(s)
Ecosystem , Water Pollutants, Chemical/analysis , Australia , Calcium , Environmental Monitoring , Geologic Sediments , Tasmania
2.
Mar Pollut Bull ; 159: 111490, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32738641

ABSTRACT

Laboratories from 14 countries (with different levels of expertise in radionuclide measurements and 210Pb dating) participated in an interlaboratory comparison exercise (ILC) related to the application of 210Pb sediment dating technique within the framework of the IAEA Coordinated Research Project. The laboratories were provided with samples from a composite sediment core and were required to provide massic activities of several radionuclides and an age versus depth model from the obtained results, using the most suitable 210Pb dating model. Massic concentrations of Zn and Cu were also determined to be used for chronology validation. The ILC results indicated good analytical performances while the dating results didn't demonstrate the same degree of competence in part due to the different experience in dating of the participant laboratories. The ILC exercise enabled evaluation of the difficulties faced by laboratories implementing 210Pb dating methods and identified some limitations in providing reliable chronologies.


Subject(s)
Lead Radioisotopes/analysis , Lead , Environmental Monitoring , Geologic Sediments , Humans , Radiometry
3.
J Environ Radioact ; 151 Pt 3: 579-86, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26344369

ABSTRACT

Soil and sediment samples from the Sydney basin were measured to ascertain fallout radionuclide activity concentrations and atom ratios. Caesium-137 ((137)Cs) was measured using gamma spectroscopy, and plutonium isotopes ((239)Pu and (240)Pu) were quantified using accelerator mass spectrometry (AMS). Fallout radionuclide activity concentrations were variable ranging from 0.6 to 26.1 Bq/kg for (137)Cs and 0.02-0.52 Bq/kg for (239+240)Pu. Radionuclides in creek sediment samples were an order of magnitude lower than in soils. (137)Cs and (239+240)Pu activity concentration in soils were well correlated (r(2) = 0.80) although some deviation was observed in samples collected at higher elevations. Soil ratios of (137)Cs/(239+240)Pu (decay corrected to 1/1/2014) ranged from 11.5 to 52.1 (average = 37.0 ± 12.4) and showed more variability than previous studies. (240)Pu/(239)Pu atom ratios ranged from 0.117 to 0.165 with an average of 0.146 (±0.013) and an error weighted mean of 0.138 (±0.001). These ratios are lower than a previously reported ratio for Sydney, and lower than the global average. However, these ratios are similar to those reported for other sites within Australia that are located away from former weapons testing sites and indicate that atom ratio measurements from other parts of the world are unlikely to be applicable to the Australian context.


Subject(s)
Cesium Radioisotopes/analysis , Plutonium/analysis , Radioactive Fallout/analysis , Soil Pollutants, Radioactive/analysis , Water Pollutants, Radioactive/analysis , Geologic Sediments/analysis , Mass Spectrometry , New South Wales
4.
J Environ Radioact ; 106: 1-7, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22304994

ABSTRACT

A Compton suppressed high-purity germanium (HPGe) detector is well suited to the analysis of low levels of radioactivity in environmental samples. The difference in geometry, density and composition of environmental calibration standards (e.g. soil) can contribute to excessive experimental uncertainty to the measured efficiency curve. Furthermore multiple detectors, like those used in a Compton suppressed system, can add complexities to the calibration process. Monte Carlo simulations can be a powerful complement in calibrating these types of detector systems, provided enough physical information on the system is known. A full detector model using the Geant4 simulation toolkit is presented and the system is modelled in both the suppressed and unsuppressed mode of operation. The full energy peak efficiencies of radionuclides from a standard source sample is calculated and compared to experimental measurements. The experimental results agree relatively well with the simulated values (within ∼5 - 20%). The simulations show that coincidence losses in the Compton suppression system can cause radionuclide specific effects on the detector efficiency, especially in the Compton suppressed mode of the detector. Additionally since low energy photons are more sensitive to small inaccuracies in the computational detector model than high energy photons, large discrepancies may occur at energies lower than ∼100 keV.


Subject(s)
Radiation Monitoring/instrumentation , Radioisotopes/analysis , Computer Simulation , Germanium , Monte Carlo Method , Radiation Monitoring/methods , Spectrometry, Gamma
5.
J Environ Radioact ; 52(1): 67-89, 2001.
Article in English | MEDLINE | ID: mdl-11202687

ABSTRACT

Four sediment cores from the continental margin adjacent to Sydney were analyzed for 210Pb, 137Cs, trace metals (Ag, Cd, Co, Cu, Mn, Ni, Pb, Zn), iron, dry bulk density, mud and moisture content. The concentrations of trace metals in the total sediment are low at all sites, although slightly elevated concentrations of Ag, Cu, Pb and Zn are present in the fine fraction of sediment (< 62.5 microns) near a major ocean outfall. Concentrations of trace metals in the fine fraction of sediment are similar in the upper 10-15 cm, indicating strong vertical mixing of the sediments, whereas an upward coarsening grain size in the upper 1-3 cm of sediment supports physical resuspension during storms. Sediment accumulation rates on the middle shelf adjacent to Sydney were estimated from downcore profiles of 210Pb and 137Cs and range between 0.2 and 0.4 cm yr-1. Although the mass fluxes of Cu, Pb and Zn within a distance of 2 km from the outfall (up to 36.1, 30.8 and 86.2 micrograms cm-2 yr-1, respectively) are greater than 20 km north of the outfall (< 23.5 micrograms cm-2 yr-1), the low concentrations of trace metals in sediments near the outfall support an efficient dispersal of anthropogenic contaminants on this continental margin.


Subject(s)
Cesium Radioisotopes/pharmacokinetics , Geologic Sediments , Lead Radioisotopes/pharmacokinetics , Metals, Heavy/pharmacokinetics , Cesium Radioisotopes/analysis , Environmental Monitoring , Lead Radioisotopes/analysis , Metals, Heavy/analysis , Water Movements , Weather
SELECTION OF CITATIONS
SEARCH DETAIL
...