Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38860856

ABSTRACT

Keratin intermediate filaments form dynamic filamentous networks, which provide mechanical stability, scaffolding and protection against stress to epithelial cells. Keratins and other intermediate filaments have been increasingly linked to the regulation of mitochondrial function and homeostasis in different tissues and cell types. While deletion of keratin 8 (K8‒/‒) in mouse colon elicits a colitis-like phenotype, epithelial hyperproliferation and blunted mitochondrial ketogenesis, the role for K8 in colonocyte mitochondrial function and energy metabolism is unknown. We used two K8 knockout mouse models and CRISPR/Cas9 K8‒/‒ colorectal adenocarcinoma Caco-2 cells to answer this question. The results show that K8‒/‒ colonocyte mitochondria in vivo are smaller and rounder, and that mitochondrial motility is increased in K8‒/‒ Caco-2 cells. Furthermore, K8-/- Caco-2 cells displayed diminished mitochondrial respiration and decreased mitochondrial membrane potential compared to controls, whereas glycolysis was not affected. The levels of mitochondrial respiratory chain complex proteins and mitochondrial regulatory proteins mitofusin-2 and prohibitin were decreased both in vitro in K8‒/‒ Caco-2 cells and in vivo in K8‒/‒ mouse colonocytes, and re-expression of K8 into K8‒/‒ Caco-2 cells normalizes the mitofusin-2 levels. Mitochondrial Ca2+ is an important regulator of mitochondrial energy metabolism and homeostasis, and Caco-2 cells lacking K8 displayed decreased levels and altered dynamics of mitochondrial matrix and cytoplasmic Ca2+. In summary, these novel findings attribute an important role for colonocyte K8 in stabilizing mitochondrial shape and movement and maintaining mitochondrial respiration and Ca2+ signaling. Further, how these metabolically compromised colonocytes are capable of hyperproliferating presents an intriguing question for future studies.

2.
Mol Imaging Biol ; 26(2): 322-333, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38110791

ABSTRACT

PURPOSE: Inflammatory bowel disease (IBD) can be imaged with positron emission tomography (PET), but existing PET radiopharmaceuticals have limited diagnostic accuracy. Vascular adhesion protein-1 (VAP-1) is an endothelial cell surface molecule that controls leukocyte extravasation into sites of inflammation. However, the role of inflammation-induced VAP-1 expression in IBD is still unclear. Therefore, this study investigated the utility of VAP-1-targeted [68Ga]Ga-DOTA-Siglec-9 positron emission tomography/computed tomography (PET/CT) for assessing inflammation in two mouse models of IBD. PROCEDURES: Studies were performed using K8-/- mice that develop a chronic colitis-phenotype and C57Bl/6NCrl mice with acute intestinal inflammation chemically-induced using 2.5% dextran sodium sulfate (DSS) in drinking water. In both diseased and control mice, uptake of the VAP-1-targeting peptide [68Ga]Ga-DOTA-Siglec-9 was assessed in intestinal regions of interest using in vivo PET/CT, after which ex vivo gamma counting, digital autoradiography, and histopathological analyses were performed. Immunofluorescence staining was performed to determine VAP-1-expression in the intestine, including in samples from patients with ulcerative colitis. RESULTS: Intestinal inflammation could be visualized by [68Ga]Ga-DOTA-Siglec-9 PET/CT in two murine models of IBD. In both models, the in vivo PET/CT and ex vivo studies of [68Ga]Ga-DOTA-Siglec-9 uptake were significantly higher than in control mice. The in vivo uptake was increased on average 1.4-fold in the DSS model and 2.0-fold in the K8-/- model. Immunofluorescence staining revealed strong expression of VAP-1 in the inflamed intestines of both mice and patients. CONCLUSIONS: This study suggests that the VAP-1-targeting [68Ga]Ga-DOTA-Siglec-9 PET tracer is a promising tool for non-invasive imaging of intestinal inflammation. Future studies in patients with IBD and evaluation of the potential value of [68Ga]Ga-DOTA-Siglec-9 in diagnosis and monitoring of the disease are warranted.


Subject(s)
Heterocyclic Compounds, 1-Ring , Inflammatory Bowel Diseases , Positron Emission Tomography Computed Tomography , Humans , Mice , Animals , Positron Emission Tomography Computed Tomography/methods , Gallium Radioisotopes/chemistry , Disease Models, Animal , Positron-Emission Tomography/methods , Inflammation , Sialic Acid Binding Immunoglobulin-like Lectins/chemistry , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/pharmacology
3.
Front Cardiovasc Med ; 9: 912578, 2022.
Article in English | MEDLINE | ID: mdl-36312264

ABSTRACT

Objective: High-density lipoprotein (HDL) is a heterogeneous group of subpopulations differing in protein/lipid composition and in their anti-atherogenic function. There is a lack of assays that can target the functionality of HDL particles related to atherosclerosis. The objective of this study was to construct two-site apolipoprotein A-I (apoA-I) assays and to evaluate their clinical performance in patients with suspected obstructive coronary artery disease (CAD). Approach and results: Direct two-site apoA-I assays (named 109-121 and 110-525) were developed to identify the presence of apoA-I in the HDL of patients with CAD using apoA-I antibodies as a single-chain variable fragment fused with alkaline phosphatase. ApoA-I109-121 and apoA-I110-525 were measured in 197 patients undergoing coronary computed tomography angiography (CTA) and myocardial positron emission tomography perfusion imaging due to suspected obstructive CAD. Among patients not using lipid-lowering medication (LLM, n = 125), the level of apoA-I110-525 was higher in the presence than in the absence of coronary atherosclerosis [21.88 (15.89-27.44) mg/dl vs. 17.66 (13.38-24.48) mg/dl, P = 0.01)], whereas there was no difference in apoA-I109-121, HDL cholesterol, and apoA-I determined using a polyclonal apoA-I antibody. The levels of apoA-I109-121 and apoA-I110-525 were similar in the presence or absence of obstructive CAD. Among patients not using LLM, apoA-I110-525 adjusted for age and sex identified individuals with coronary atherosclerosis with a similar accuracy to traditional risk factors [area under the curve [AUC] (95% CI): 0.75(0.66-0.84) 0.71 (0.62-0.81)]. However, a combination of apoA-I110-525 with risk factors did not improve the accuracy [AUC (95% CI): 0.73 (0.64-0.82)]. Conclusion: Direct two-site apoA-I assays recognizing heterogeneity in reactivity with apoA-I could provide a potential approach to identify individuals at a risk of coronary atherosclerosis. However, their clinical value remains to be studied in larger cohorts.

4.
Mol Biol Cell ; 33(13): ar121, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36001365

ABSTRACT

Keratin intermediate filaments convey mechanical stability and protection against stress to epithelial cells. Keratins are essential for colon health, as seen in keratin 8 knockout (K8-/-) mice exhibiting a colitis phenotype. We hypothesized that keratins support the nuclear envelope and lamina in colonocytes. K8-/- colonocytes in vivo exhibit significantly decreased levels of lamins A/C, B1, and B2 in a colon-specific and cell-intrinsic manner. CRISPR/Cas9- or siRNA-mediated K8 knockdown in Caco-2 cells similarly decreased lamin levels, which recovered after reexpression of K8 following siRNA treatment. Nuclear area was not decreased, and roundness was only marginally increased in cells without K8. Down-regulation of K8 in adult K8flox/flox;Villin-CreERt2 mice following tamoxifen administration significantly decreased lamin levels at day 4 when K8 levels had reduced to 40%. K8 loss also led to reduced levels of plectin, LINC complex, and lamin-associated proteins. While keratins were not seen in the nucleoplasm without or with leptomycin B treatment, keratins were found intimately located at the nuclear envelope and complexed with SUN2 and lamin A. Furthermore, K8 loss in Caco-2 cells compromised nuclear membrane integrity basally and after shear stress. In conclusion, colonocyte K8 helps maintain nuclear envelope and lamina composition and contributes to nuclear integrity.


Subject(s)
Keratin-8 , Keratins , Animals , Caco-2 Cells , Colon/metabolism , Cytoskeletal Proteins/metabolism , Epithelial Cells/metabolism , Humans , Keratin-8/genetics , Keratins/metabolism , Lamin Type A/metabolism , Mice , Nuclear Envelope/metabolism , Plectin/metabolism , RNA, Small Interfering/metabolism , Tamoxifen
5.
Sci Rep ; 11(1): 18698, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34548577

ABSTRACT

Measurement of cardiac troponin I (cTnI) should be feasible for point-of-care testing (POCT) to diagnose acute myocardial infarction (AMI). Lateral flow immunoassays (LFIAs) have been long implemented in POCT and clinical settings. However, sensitivity, matrix effect and quantitation in lateral flow immunoassays (LFIAs) have been major limiting factors. The performance of LFIAs can be improved with upconverting nanoparticle (UCNP) reporters. Here we report a new methodological approach to quantify cTnI using UCNP-LFIA technology with minimized plasma interference. The performance of the developed UCNP-LFIA was evaluated using clinical plasma samples (n = 262). The developed UCNP-LFIA was compared to two reference assays, the Siemens Advia Centaur assay and an in-house well-based cTnI assay. By introducing an anti-IgM scrub line and dried EDTA in the LFIA strip, the detection of cTnI in plasma samples was fully recovered. The UCNP-LFIA was able to quantify cTnI concentrations in patient samples within the range of 30-10,000 ng/L. The LoB and LoD of the UCNP-LFIA were 8.4 ng/L and 30 ng/L. The method comparisons showed good correlation (Spearman's correlation 0.956 and 0.949, p < 0.0001). The developed UCNP-LFIA had LoD suitable for ruling in AMI in patients with elevated cTnI levels and was able to quantify cTnI concentrations in patient samples. The technology has potential to provide simple and rapid assay for POCT in ED setting.


Subject(s)
Immunoassay/methods , Myocardial Infarction/diagnosis , Nanoparticles/chemistry , Troponin I/blood , Calibration , Humans , Limit of Detection
6.
J Pharm Biomed Anal ; 194: 113772, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33309125

ABSTRACT

High density lipoproteins (HDL) are a heterogenous group of subpopulations differing in protein/lipid composition and in their anti-atherogenic function. There is a lack of specific and robust assays which can target the functionality of HDL with respect to atherosclerosis. With recently generated CAD HDL targeted, single chain recombinant antibodies (scFvs) we set out to design and optimize apo A-I tests to compare it with conventional HDL-C and apo A-I analyses for diagnosis and risk assessment of coronary artery disease (CAD) and its outcome. Three highly sensitive two-site apo A-I assays: 022-454, 109-121 and 110-525 were optimized. A preliminary clinical evaluation of these assays, after proper sample dilution procedure, was performed using samples derived from 195 chest pain patients (myocardial infarction (MI), n = 86 and non-MI, n = 109), collected at the time of admission and at discharge from hospital (hospital stay ≤ 24 h). The clinical performance of the assays was compared with apo A-I measured with polyclonal anti-apo A-I antibody using conventional ELISA. Apo A-I data was in addition compared with HDL-C concentration of the samples. The concentration of apo A-I was significantly lower in MI patients than in non-MI individuals with assay 022-454 (admission and discharge samples, P < 0.0001 and = 0.004); assay 109-121 (admission and discharge samples, P = 0.04 and 0.0009), and, ELISA based apo A-I test (admission and discharge samples, P = 0.008 and < 0.0001). HDL-C (admission and discharge samples, P = 0.002 and P = 0.01) was also significantly lower in MI patients. In Kaplan- Meier analysis, two-site assay 109-121 assay predicted mortality from admission samples at 1.5 yrs (whole cohort, P = 0.01 and in MI patients, P = 0.05) and at 6 months (whole cohort, P = 0.04). Assay 110-525 predicted mortality at 1.5 yrs from admission samples of non-MI patients (P = 0.01) and at 6 months from whole discharge sample cohort (P = 0.04). Polyclonal anti-apo A-I based conventional assay predicted mortality at 1.5 yrs from admission samples of whole cohort (P = 0.03). Two-site apo A-I assay 022-454 and HDL-C provided no capability of predicting mortality in the whole cohort or any sub-group. In conclusion, two of the tested recombinant apo A-I antibody combinations (sc 109-121 and sc 110-525) display promising outcome to improve diagnosis and prediction of future cardiac events in cardiac patients over polyclonal apo A-I ELISA and HDL-C assays. The noted differences, while interesting, are preliminary and need however to be verified in extensive cohorts of pathological cardiac conditions and healthy controls.


Subject(s)
Bacteriophages , Coronary Artery Disease , Apolipoprotein A-I , Humans , Immunoassay , Lipoproteins, HDL
7.
Int J Biochem Cell Biol ; 129: 105878, 2020 12.
Article in English | MEDLINE | ID: mdl-33152513

ABSTRACT

Keratin intermediate filament proteins are major cytoskeletal components of the mammalian simple layered columnar epithelium in the gastrointestinal tract. Human colon crypt epithelial cells express keratins 18, 19 and 20 as the major type I keratins, and keratin 8 as the type II keratin. Keratin expression patterns vary between species, and mouse colonocytes express keratin 7 as a second type II keratin. Colonic keratin patterns change during cell differentiation, such that K20 increases in the more differentiated crypt cells closer to the central lumen. Keratins provide a structural and mechanical scaffold to support cellular stability, integrity and stress protection in this rapidly regenerating tissue. They participate in central colonocyte processes including barrier function, ion transport, differentiation, proliferation and inflammatory signaling. The cell-specific keratin compositions in different epithelial tissues has allowed for the utilization of keratin-based diagnostic methods. Since the keratin expression pattern in tumors often resembles that in the primary tissue, it can be used to recognize metastases of colonic origin. This review focuses on recent findings on the biological functions of mammalian colon epithelial keratins obtained from pivotal in vivo models. We also discuss the diagnostic value of keratins in chronic colonic disease and known keratin alterations in colon pathologies. This review describes the biochemical properties of keratins and their molecular actions in colonic epithelial cells and highlights diagnostic data in colorectal cancer and inflammatory bowel disease patients, which may facilitate the recognition of disease subtypes and the establishment of personal therapies in the future.


Subject(s)
Colon/metabolism , Keratins/metabolism , Animals , Colon/cytology , Colon/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Epithelium/metabolism , Homeostasis , Humans
8.
Clin Biochem ; 48(4-5): 313-7, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25583092

ABSTRACT

OBJECTIVES: To study the skeletal troponin I (skTnI) cross-reactivity of four different commercially available antibodies in four cardiac troponin I (cTnI) research assay versions having the same epitope specificity as evidenced by peptide mapping. DESIGN AND METHODS: The four research assays all use two solid phase antibodies and one detection antibody attached to intrinsically fluorescent nanoparticles. Two alternative antibodies were used for one capture antibody and two for the detector antibody. The assays were evaluated in terms of analytical sensitivity and by determining assay cross-reactivity to skTnI. Additionally, regression analysis was performed by measuring a sample panel (n=101) with all of the four assay versions. RESULTS: A false-positive cTnI concentration of >7000ng/L was measured with one of the assay versions, when serum was spiked with 500,000ng/L skTnI. The corresponding observed cTnI values for the other three assay versions varied from 616ng/L to 727ng/L. Out of the 101 clinical samples assayed, five showed spuriously (3- to 148-fold) elevated cTnI values with the skTnI interference prone assay setup, but not with the other assay versions. According to our investigational skTnI assay, all five samples contained measurable amounts of skTnI (range: 5500-702,000ng/L). CONCLUSIONS: Two out of four cTnI antibodies tested cross-reacted vastly with skTnI but did not cause any notable interference unless paired together. Therefore, skTnI cross-reactivity should be carefully assessed when cTnI assay antibodies claimed to be cTnI specific are selected.


Subject(s)
Antibodies/blood , Biological Assay/methods , Troponin I/blood , Troponin T/blood , Antibodies/immunology , Biological Assay/standards , Cross Reactions/immunology , Humans , Troponin I/immunology , Troponin T/immunology
9.
Clin Biochem ; 48(4-5): 347-52, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25111014

ABSTRACT

OBJECTIVES: To introduce a novel nanoparticle-based immunoassay for cardiac troponin I (cTnI) utilizing chimeric antibody fragments and to demonstrate that removal of antibody Fc-part and antibody chimerization decrease matrix related interferences. DESIGN AND METHODS: A sandwich-type immunoassay for cTnI based on recombinant chimeric (mouse variable/human constant) antigen binding (cFab) antibodies and intrinsically fluorescent nanoparticles was developed. To test whether using chimeric antibody fragments helps to avoid matrix related interferences, samples (n=39) with known amounts of triglycerides, bilirubin, rheumatoid factor (RF) or human anti-mouse antibodies (HAMAs) were measured with the novel assay, along with a previously published nanoparticle-based research assay with the same antibody epitopes. RESULTS: The limit of detection (LoD) was 3.30ng/L. Within-laboratory precision for 29ng/L and 2819ng/L cTnI were 13.7% and 15.9%, respectively. Regression analysis with Siemens ADVIA Centaur® yielded a slope (95% confidence intervals) of 0.18 (0.17-1.19) and a y-intercept of 1.94 (-1.28-3.91) ng/L. When compared to a previously published nanoparticle-based assay, the novel assay showed substantially reduced interference in the tested interference prone samples, 15.4 vs. 51.3%. A rheumatoid factor containing sample was decreased from 241ng/L to

Subject(s)
Autoantibodies/immunology , Chimera/immunology , Immunoglobulin Fragments/immunology , Recombinant Proteins/immunology , Troponin I/immunology , Animals , Autoantibodies/metabolism , Chimera/metabolism , Humans , Immunoassay/methods , Immunoglobulin Fragments/metabolism , Mice , Protein Binding/physiology , Recombinant Proteins/metabolism , Troponin I/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...