Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Evol Lett ; 8(2): 231-242, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38525028

ABSTRACT

Parallel clines in traits related to adaptation in a species can be due to independent selection on a pair of traits, or due to selection in one trait resulting in a parallel cline in a correlated trait. To distinguish between the mechanisms giving rise to parallel adaptive population divergence of multiple traits along an environmental gradient we need to study variation, correlations, and selective forces within individual populations along the gradient. In many tree species, budset timing (BST) forms a latitudinal cline, and parallel clinal variation is also found in other seedling traits, such as first-year height (FYH) and fall frost injury (FFI). In this study, we set up a common garden experiment with open pollinated progeny from natural populations of Scots pine (Pinus sylvestris), with one large sample from single population (500 families) and smaller samples from across a latitudinal gradient. BST, FYH and induced FFI were first measured in a greenhouse. The seedlings were then planted in the field, where survival and height were measured at the age of 9 years as fitness proxies. We compared between- and within-population variation and genetic correlations of these three seedling traits, and estimated selection gradients at the family level in our main population, taking into account the potential effects of seed weight. Between-population genetic correlations between seedling traits were high (0.76-0.95). Within-population genetic correlations in the main population were lower (0.14-0.35), as in other populations (0.10-0.39). Within population, extensive adaptive variation persists in the seedling traits, in line with rather weak selection gradients, yet maintaining the clines. Although our sampling does not cover the whole cline equally, the results suggest that the individual clines in these traits are maintained by largely independently acting selection, which results in fewer constraints in adaptation under changing climate.

2.
Membranes (Basel) ; 12(12)2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36557139

ABSTRACT

One option for new nitrogen sources is industrial liquid side streams containing ammonium nitrogen (NH4-N). Unfortunately, NH4-N often exists in low concentrations in large water volumes. In order to achieve a highly concentrated NH4-Nsolution, scalant removal is needed. In this study, scalant removal by precipitation was investigated. At alkali pH, sodium carbonate (Na2CO3) was used as a precipitation chemical while at acidic pH, the chemical used was oxalic acid (C2H2O4). At alkali pH, high Na2CO3 dose was needed to achieve low content of calcium, which, with sulphate, formed the main scalant in the studied mine water. NH4-N at alkali pH was in the form of gaseous ammonia but it stayed well in the solution during pre-treatment for nanofiltration (NF) and reverse osmosis (RO). However, it was not rejected sufficiently, even via LG SW seawater RO membrane. At acidic pH with CaC2O4 precipitation, NF90 was able to be used for NH4-N concentration up to the volume reduction factor of 25. Then, NH4-N concentration increased from 0.17 g/L to 3 g/L. NF270 produced the best fluxes for acid pre-treated mine water, but NH4-N rejection was not adequate. NF90 membrane with mine water pre-treated using acid was successfully verified on a larger scale using the NF90-2540 spiral wound element.

3.
Int J Parasitol Parasites Wildl ; 17: 205-210, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35198374

ABSTRACT

In Finland, free-ranging Eurasian lynx (Lynx lynx) population has grown from 30 to 40 individuals to 2800 individuals since the species became partly protected in 1962. Changes in host population size are known to have an impact on host-parasite dynamics, and the Eurasian lynx population in Finland provides a unique opportunity for studying the potential effects of dramatic population increase and expansion of a solitary apex predator on their parasite prevalence and abundance. Toxocara cati is a zoonotic gastrointestinal parasite infecting domestic cats and wild felids worldwide. We studied T. cati infection prevalence and worm burden in 2756 Eurasian lynx individuals from Finland, covering the years 1999-2015. Toxocara cati worms that had been collected from intestinal contents were identified based on morphology. We performed regression analyses to investigate possible associations of age, sex, and host population density with T. cati infection. We found T. cati from 2324 (84.3%, 95% confidence interval 82.9-86.0) of the examined lynx. Each year, the infection prevalence was higher than 75% and not density dependent. The parasites were strongly aggregated, with older individuals harboring fewer T. cati than younger ones did. Old females aged 9-15 years had higher T. cati abundance than males of the same age group. Our results indicate that T. cati was a common and abundant parasite of Eurasian lynx throughout the study period, regardless of the changing population size and density.

4.
Environ Technol ; 43(18): 2844-2854, 2022 Jul.
Article in English | MEDLINE | ID: mdl-33734920

ABSTRACT

Recycled bed sand from a power plant's fluidized bed reactor was used to remove humic substances (HSs) from surface water samples. The performance of sand samples screened into different size fractions together with unscreened sand was evaluated in removing HSs by performing shaking and column experiments, and by monitoring the quality of the treated water samples in terms of pH, conductivity, chemical oxygen demand (COD), and colour. At the beginning of the column experiments, the used sand fractions removed HSs with over 80% efficiency. However, as the experiments proceeded, the removal efficiency rapidly decreased, reaching a steady state during which a column filled with small-particle-size screened sand removed 20-25% of the COD and colour at a 2.2 kg/h flow speed, and 25-35% of the COD and 30-35% of the colour at a slow 0.5 kg/h flow speed. With unscreened sand, the corresponding COD and colour removal efficiencies were 10-20% (COD) and 10-18% (colour) for fast column experiments, and 22-27% for COD and 25-30% for colour during slow column experiments. Elemental analysis revealed that recycled fluidized bed sand contained several cationic compounds known to form complexes with HSs. Especially calcium together with aluminium and iron are potential candidates for removing colour and COD from the water samples.HighlightsRecycled fluidized bed sand could be used as a low-cost adsorbent material for removing HSs from surface water samplesEspecially the COD and colour of the water samples could be reduced by the sand treatmentsFluidized bed sand contained several cationic compounds forming complexes with HSsNo significant amounts of heavy metals were leached during the sand treatments.


Subject(s)
Water Pollutants, Chemical , Water Purification , Biological Oxygen Demand Analysis , Humic Substances , Sand , Waste Disposal, Fluid , Water
5.
Membranes (Basel) ; 11(12)2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34940476

ABSTRACT

Water reuse from wastewater treatment plants can significantly reduce freshwater demand. Additionally municipal sewage and some industrial wastewaters could be used as sources of nutrients and carbon more effectively than they are used today. Biological treatments have attracted the most attention in wastewater purification, whereas, so far, only a little attention has been paid to the physico-chemical technologies. These technologies could, however, have great potential to recover nutrients when purifying wastewater. In this study, the main emphasis was to study the possibilities to utilize existing physico-chemical unit operations for wastewater purification and nutrients as well as carbon recovery. Unit operations were selected so that they could produce exploitable circular economy products from wastewaters and be assembled in a mobile container for carrying out recovery anywhere that is suitable. The results showed that in a mobile container, solids could be successfully separated from the studied wastewaters by flocculation-assisted solid/liquid separation and then processed into hydrochar by hydrothermal carbonization. Phosphate was precipitated using lime milk as calcium phosphate, and ammonium nitrogen was captured from the wastewater using membrane contactor technology resulting in ammonium sulphate for fertilizer use. Additionally, reverse osmosis retained residual impurities well, producing good quality water for reuse. The techno-economic feasibility seems promising.

6.
Water Sci Technol ; 84(8): 2014-2027, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34695027

ABSTRACT

Membrane-based concept comprising microfiltration and nanofiltration pre-treatments, reverse osmosis pre-concentration, and membrane distillation used for final concentration was applied for producing purified and concentrated recycled deicing fluid. Additionally, a techno-economic assessment was conducted to determine the economic viability of the recycling concept. By a straightforward membrane-based concept, ∼95% of solid and colloidal impurities together with certain deicing fluid additives such as colorants and surfactants could be efficiently removed (removal efficiencies of ∼90% and ∼93%, respectively), and resulting purified deicing fluid could be concentrated to ∼60 wt% glycol solution, enabling its recycling in deicing operations. Preliminary techno-economic assessment indicated that a membrane-based concept can be used as an economically viable alternative for recycling the spent deicing fluid at airports. The techno-economic case study at an airport consuming 4,000 tonnes of deicing fluid during 6 months annually showed the concept to be economically feasible when the price of purchased propylene glycol is over 1,000 EUR/tonne. In addition to the purchase price of the propylene glycol, the most important cost factors were labor cost and the annual consumption of deicing fluid. Integrating the membrane concept with other operations at airport has potential to decrease the labor cost and further improve the economic feasibility of the concept.


Subject(s)
Filtration , Water Purification , Recycling
7.
Water Sci Technol ; 84(6): 1389-1402, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34559074

ABSTRACT

Intense pressure on water resources has led to efforts to reuse reclaimed processing wastewater in the food industry. There are tight rules for water quality, but efficient separation technologies such as reverse osmosis possess good possibilities for water reuse. This study developed a membrane-based reuse water concept for wastewater from the candy industry emphasizing the pre-treatment stage in the concept to reduce fouling. The wastewater contained suspended solids, sugar compounds and the ingredients for candy gelation, which had a tendency to foul membranes, making pre-treatment essential for a successful concept. Cross-rotational ultrafiltration, which featured enhanced fouling prevention for membranes, functioned well for the removal of challenging substances. Conventional filtration technologies were impractical due to a low flux, even when the viscosity of the wastewater was reduced using surfactants. The wastewater had a high chemical oxygen demand, meaning that there was a strong fouling potential for reverse osmosis membranes, but also high osmotic pressure. A spiral wound reverse osmosis functioned well when the wastewater was pre-treated, and it produced good quality water with respect to all the other studied parameters except the chemical oxygen demand. However, chemical oxygen demand rejection was 99% since the concentration in the wastewater was originally very high.


Subject(s)
Wastewater , Water Purification , Candy , Membranes, Artificial , Osmosis , Waste Disposal, Fluid , Wastewater/analysis , Water
8.
Water Sci Technol ; 2017(1): 194-205, 2017 Apr.
Article in English | MEDLINE | ID: mdl-29698234

ABSTRACT

Chemical, physical and biological technologies for removal of sulphate from mine tailings pond water (8 g SO42-/L) were investigated. Sulphate concentrations of approximately 1,400, 700, 350 and 20 mg/L were obtained using gypsum precipitation, and ettringite precipitation, biological sulphate reduction or reverse osmosis (RO) after gypsum pre-treatment, respectively. Gypsum precipitation can be widely utilized as a pre-treatment method, as was shown in this study. Clearly the lowest sulphate concentrations were obtained using RO. However, RO cannot be the only water purification technology, because the concentrate needs to be treated. There would be advantages using biological sulphate reduction, when elemental sulphur could be produced as a sellable end product. Reagent and energy costs for 200 m3/h tailings pond water feed based on laboratory studies and process modelling were 1.1, 3.1, 1.2 and 2.7 MEur/year for gypsum precipitation, ettringite precipitation, RO and biological treatment after gypsum precipitation, respectively. The most appropriate technology or combination of technologies should be selected for every industrial site case by case.


Subject(s)
Industrial Waste , Mining , Sulfates/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Calcium Sulfate/chemistry , Minerals/chemistry , Osmosis , Sulfur Oxides , Waste Disposal, Fluid , Water
9.
Environ Monit Assess ; 188(4): 228, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26979172

ABSTRACT

Forest harvesting, especially when intensified harvesting method as whole-tree harvesting with stump lifting (WTHs) are used, may increase mercury (Hg) and methylmercury (MeHg) leaching to recipient water courses. The effect can be enhanced if the underlying bedrock and overburden soil contain Hg. The impact of stem-only harvesting (SOH) and WTHs on the concentrations of Hg and MeHg as well as several other variables in the ditch water was studied using a paired catchment approach in eight drained peatland-dominated catchments in Finland (2008-2012). Four of the catchments were on felsic bedrock and four on black schist bedrock containing heavy metals. Although both Hg and MeHg concentrations increased after harvesting in all treated sites according to the randomized intervention analyses (RIAs), there was only a weak indication of a harvest-induced mobilization of Hg and MeHg into the ditches. Furthermore, no clear differences between WTHs and SOH were found, although MeHg showed a nearly significant difference (p = 0.06) between the harvesting regimes. However, there was a clear bedrock effect, since the MeHg concentrations in the ditch water were higher at catchments on black schist than at those on felsic bedrock. The pH, suspended solid matter (SSM), dissolved organic carbon (DOC), and iron (Fe) concentrations increased after harvest while the sulfate (SO4-S) concentration decreased. The highest abundances of sulfate-reducing bacteria (SRB) were found on the sites with high MeHg concentrations. The biggest changes in ditch water concentrations occurred first 2 years after harvesting.


Subject(s)
Environmental Monitoring , Forestry/methods , Mercury/analysis , Methylmercury Compounds/analysis , Water Pollutants, Chemical/analysis , Finland , Forestry/statistics & numerical data , Forests , Iron , Soil/chemistry , Trees
10.
J Environ Manage ; 151: 369-77, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25588119

ABSTRACT

Recent studies have shown a considerable increase in the abundance of rowan (Sorbus aucuparia) saplings in urban forests in Finland, yet the reasons for this increase are not well understood. Here we investigated whether canopy cover or tree species composition, i.e., the basal areas of different tree species in Norway spruce dominated urban forests, affects the abundances of rowan seedlings, saplings and trees. Altogether 24 urban forest patches were investigated. We sampled the number of rowan and other saplings, and calculated the basal areas of trees. We showed that rowan abundance was affected by tree species composition. The basal area of rowan trees (≥ 5 cm in diameter at breast height, dbh) decreased with increasing basal area of Norway spruce, while the cover of rowan seedlings increased with an increase in Norway spruce basal area. However, a decrease in the abundance of birch (Betula pendula) and an increase in the broad-leaved tree group (Acer platanoides, Alnus glutinosa, Alnus incana, Amelanchier spicata, Prunus padus, Quercus robur, Rhamnus frangula and Salix caprea) coincided with a decreasing number of rowans. Furthermore, rowan saplings were scarce in the vicinity of mature rowan trees. Although it seems that tree species composition has an effect on rowan, the relationship between rowan saplings and mature trees is complex, and therefore we conclude that regulating tree species composition is not an easy way to keep rowan thickets under control in urban forests in Finland.


Subject(s)
Biodiversity , Forests , Sorbus/physiology , Trees , Cities , Ecosystem , Finland , Population Dynamics , Seedlings
11.
Front Plant Sci ; 5: 264, 2014.
Article in English | MEDLINE | ID: mdl-24982664

ABSTRACT

We studied the photosynthetic activity of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies [L.] Karst) in relation to air temperature changes from March 2013 to February 2014. We measured the chlorophyll fluorescence of approximately 50 trees of each species growing in southern Finland. Fluorescence was measured 1-3 times per week. We began by measuring shoots present in late winter (i.e., March 2013) before including new shoots once they started to elongate in spring. By July, when the spring shoots had achieved similar fluorescence levels to the older ones, we proceeded to measure the new shoots only. We analyzed the data by fitting a sigmoidal model containing four parameters to link sliding averages of temperature and fluorescence. A parameter defining the temperature range over which predicted fluorescence increased most rapidly was the most informative with in describing temperature dependence of fluorescence. The model generated similar fluorescence patterns for both species, but differences were observed for critical temperature and needle age. Down regulation of the light reaction was stronger in spring than in autumn. Pine showed more conservative control of the photosynthetic light reactions, which were activated later in spring and more readily attenuated in autumn. Under the assumption of a close correlation of fluorescence and photosynthesis, spruce should therefore benefit more than pine from the increased photosynthetic potential during warmer springs, but be more likely to suffer frost damage with a sudden cooling following a warm period. The winter of 2013-2014 was unusually mild and similar to future conditions predicted by global climate models. During the mild winter, the activity of photosynthetic light reactions of both conifers, especially spruce, remained high. Because light levels during winter are too low for photosynthesis, this activity may translate to a net carbon loss due to respiration.

SELECTION OF CITATIONS
SEARCH DETAIL
...