Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Appl Radiat Isot ; 172: 109676, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33725503

ABSTRACT

Monte Carlo transport codes PHITS and MCNP6 were used to calculate the production cross sections of 225,227Ac, 227,229Th, 223,225Ra, and 229,230,231Pa via the bombardment of a232Th target with energetic protons, deuterons, and α-particles. The incident projectile energies ranged between 10 and 800 MeV/nucleon. When possible, the predicted production cross sections were compared with the available experimental data and other predictions. The degree of the codes' abilities to match the measured data provides a qualitative assessment of the codes' abilities to predict data from similar, but unmeasured, projectile/target systems. In addition, a comparison between calculated cross sections and data may provide insight into possible improvements in the physics models employed by those transport codes.

2.
Appl Radiat Isot ; 118: 366-374, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27776333

ABSTRACT

Actinium-225 and 213Bi have been used successfully in targeted alpha therapy (TAT) in preclinical and clinical research. This paper is a continuation of research activities aiming to expand the availability of 225Ac. The high-energy proton spallation reaction on natural thorium metal targets has been utilized to produce millicurie quantities of 225Ac. The results of sixteen irradiation experiments of thorium metal at beam energies between 78 and 192MeV are summarized in this work. Irradiations have been conducted at Brookhaven National Laboratory (BNL) and Los Alamos National Laboratory (LANL), while target dissolution and processing was carried out at Oak Ridge National Laboratory (ORNL). Excitation functions for actinium and thorium isotopes, as well as for some of the fission products, are presented. The cross sections for production of 225Ac range from 3.6 to 16.7mb in the incident proton energy range of 78-192MeV. Based on these data, production of curie quantities of 225Ac is possible by irradiating a 5.0gcm-2 232Th target for 10 days in either BNL or LANL proton irradiation facilities.

3.
Adv Space Res ; 30(4): 907-16, 2002.
Article in English | MEDLINE | ID: mdl-12539757

ABSTRACT

Proper assessments of spacecraft shielding requirements and concomitant estimates of risk to spacecraft crews from energetic space radiation requires accurate, quantitative methods of characterizing the compositional changes in these radiation fields as they pass through thick absorbers. These quantitative methods are also needed for characterizing accelerator beams used in space radiobiology studies. Because of the impracticality/impossibility of measuring these altered radiation fields inside critical internal body organs of biological test specimens and humans, computational methods rather than direct measurements must be used. Since composition changes in the fields arise from nuclear interaction processes (elastic, inelastic and breakup), knowledge of the appropriate cross sections and spectra must be available. Experiments alone cannot provide the necessary cross section and secondary particle (neutron and charged particle) spectral data because of the large number of nuclear species and wide range of energies involved in space radiation research. Hence, nuclear models are needed. In this paper current methods of predicting total and absorption cross sections and secondary particle (neutrons and ions) yields and spectra for space radiation protection analyses are reviewed. Model shortcomings are discussed and future needs presented.


Subject(s)
Cosmic Radiation , Elementary Particle Interactions , Models, Theoretical , Radiation Protection , Space Flight , Databases, Factual , Quantum Theory , Radiation Dosage , Solar Activity , Spacecraft
4.
IEEE Trans Nucl Sci ; 48(6): 2029-33, 2001 Dec.
Article in English | MEDLINE | ID: mdl-12033226

ABSTRACT

We report experimental measurements of neutron production from collisions of neutron beams with polyethylene blocks simulating tissue at the Los Alamos National Laboratory Neutron Science Center and 1 GeV/amu iron nuclei with spacecraft shielding materials at the Brookhaven National Laboratory AGS.


Subject(s)
Elementary Particle Interactions , Neutrons , Polyethylene/radiation effects , Radiation Protection , Spacecraft , Humans , Iron , Models, Anatomic , Radiation Dosage , Radiometry , Risk Assessment
5.
Phys Med ; 17 Suppl 1: 90-3, 2001.
Article in English | MEDLINE | ID: mdl-11770545

ABSTRACT

In order for humans and electronics to fully and safely operate in the space environment, codes like HZETRN (High Charge and Energy Transport) must be included in any designer's toolbox for design evaluation with respect to radiation damage. Currently, spacecraft designers do not have easy access to accurate radiation codes like HZETRN to evaluate their design for radiation effects on humans and electronics. Today, the World Wide Web is sophisticated enough to support the entire HZETRN code and all of the associated pre and post processing tools. This package is called SIREST (Space Ionizing Radiation Effects and Shielding Tools). There are many advantages to SIREST. The most important advantage is the instant update capability of the web. Another major advantage is the modularity that the web imposes on the code. Right now, the major disadvantage of SIREST will be its modularity inside the designer's system. This mostly comes from the fact that a consistent interface between the designer and the computer system to evaluate the design is incomplete. This, however, is to be solved in the Intelligent Synthesis Environment (ISE) program currently being funded by NASA.


Subject(s)
Computer Simulation , Computer-Aided Design , Cosmic Radiation , Internet , Models, Theoretical , Space Flight/instrumentation , Algorithms , Electronics , Humans , Radiation Protection , Risk , Software , Spacecraft/instrumentation
6.
Int J Radiat Oncol Biol Phys ; 35(3): 555-64, 1996 Jun 01.
Article in English | MEDLINE | ID: mdl-8655380

ABSTRACT

PURPOSE: Target-volume delineation for stereotactic irradiation is problematic for large and irregularly shaped arteriovenous malformations (AVMs). The purpose of this report is to quantify modifications in the target volume that result from iterative treatment planning that incorporates multimodality imaging data. METHODS AND MATERIALS: Stereotactic neuroimaging procedures were performed for 20 consecutive patients with AVM volumes > 10 cm3. Angiographically defined extrema were transformed into computed tomography (CT) space. The resulting target contours were then modified by a multidisciplinary treatment planning team after iterative review of angiographic, CT, and magnetic resonance imaging (MRI) data. Volumes of interest and dose-volume histograms for proton irradiation were calculated before and after iterative target delineation. RESULTS: Initial (angiographically defined) target volumes ranged from 15.3 to 96.1 cm3 (mean, 43.6 cm3). Final (iteratively defined) target volumes ranged from 10.7 to 114.0 cm3 (mean, 38.4 cm3). The volume of presumed normal tissue excluded by iterative planning ranged from 2.6 to 47.0 cm3 (mean, 15.5 cm3). Initially untargeted AVM, most commonly obscured by embolization material, was identified in all cases (range, 0.3 to 57.8 cm3; mean, 10.3 cm3). Corresponding dose-volume histograms demonstrated marked differences regarding lesion coverage and sparing of normal tissue structures. CONCLUSIONS: Iterative target-volume delineation resulted in significant modifications from initial, angiographically defined target volumes. Substantial amounts of apparently normal tissue were excluded from the final target, and additional abnormal vascular structures were identified for incorporation. We conclude that an iterative multimodality approach to target-volume delineation may improve the overall results for stereotactic irradiation of large and complex AVMs.


Subject(s)
Intracranial Arteriovenous Malformations/diagnostic imaging , Intracranial Arteriovenous Malformations/radiotherapy , Radiotherapy Planning, Computer-Assisted , Stereotaxic Techniques , Tomography, X-Ray Computed , Humans , Magnetic Resonance Angiography , Radiotherapy Dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...