Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Cell Biol ; 162: 115-149, 2021.
Article in English | MEDLINE | ID: mdl-33707009

ABSTRACT

With the development of advanced imaging methods that took place in the last decade, the spatial correlation of microscopic and spectroscopic information-known as multimodal imaging or correlative microscopy (CM)-has become a broadly applied technique to explore biological and biomedical materials at different length scales. Among the many different combinations of techniques, Correlative Light and Electron Microscopy (CLEM) has become the flagship of this revolution. Where light (mainly fluorescence) microscopy can be used directly for the live imaging of cells and tissues, for almost all applications, electron microscopy (EM) requires fixation of the biological materials. Although sample preparation for EM is traditionally done by chemical fixation and embedding in a resin, rapid cryogenic fixation (vitrification) has become a popular way to avoid the formation of artifacts related to the chemical fixation/embedding procedures. During vitrification, the water in the sample transforms into an amorphous ice, keeping the ultrastructure of the biological sample as close as possible to the native state. One immediate benefit of this cryo-arrest is the preservation of protein fluorescence, allowing multi-step multi-modal imaging techniques for CLEM. To minimize the delay separating live imaging from cryo-arrest, we developed a high-pressure freezing (HPF) system directly coupled to a light microscope. We address the optimization of sample preservation and the time needed to capture a biological event, going from live imaging to cryo-arrest using HPF. To further explore the potential of cryo-fixation related to the forthcoming transition from imaging 2D (cell monolayers) to imaging 3D samples (tissue) and the associated importance of homogeneous deep vitrification, the HPF core technology has been revisited to allow easy modification of the environmental parameters during vitrification. Lastly, we will discuss the potential of our HPM within CLEM protocols especially for correlating live imaging using the Zeiss LSM900 with electron microscopy.


Subject(s)
Cryopreservation , Cryoelectron Microscopy , Freezing , Microscopy, Electron , Microscopy, Fluorescence , Workflow
2.
Traffic ; 15(6): 700-16, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24533564

ABSTRACT

Correlating complementary multiple scale images of the same object is a straightforward means to decipher biological processes. Light microscopy and electron microscopy are the most commonly used imaging techniques, yet despite their complementarity, the experimental procedures available to correlate them are technically complex. We designed and manufactured a new device adapted to many biological specimens, the CryoCapsule, that simplifies the multiple sample preparation steps, which at present separate live cell fluorescence imaging from contextual high-resolution electron microscopy, thus opening new strategies for full correlative light to electron microscopy. We tested the biological application of this highly optimized tool on three different specimens: the in vitro Xenopus laevis mitotic spindle, melanoma cells over-expressing YFP-langerin sequestered in organized membranous subcellular organelles and a pigmented melanocytic cell in which the endosomal system was labeled with internalized fluorescent transferrin.


Subject(s)
Cryoelectron Microscopy/methods , Cryoultramicrotomy/instrumentation , Animals , Cell Line , Cryoelectron Microscopy/instrumentation , Cryoultramicrotomy/methods , Dogs , Endosomes/metabolism , Endosomes/ultrastructure , Humans , Intracellular Membranes/metabolism , Intracellular Membranes/ultrastructure , Optical Imaging/instrumentation , Optical Imaging/methods , Spindle Apparatus/metabolism , Spindle Apparatus/ultrastructure , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL
...