Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 145(5): 3092-3100, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36696089

ABSTRACT

The replacement of aryl rings with saturated carbocyclic structures has garnered significant interest in drug discovery due to the potential for improved pharmacokinetic properties upon substitution. In particular, 1,3-difunctionalized bicyclo[1.1.1]pentanes (BCPs) have been widely adopted as bioisosteres for parasubstituted arene rings, appearing in a number of lead pharmaceutical candidates. However, despite the pharmaceutical value of 2-substituted BCPs as replacements for ortho- or meta-substituted arene rings, general and rapid syntheses of these scaffolds remain elusive. Current approaches to 2-substituted BCPs rely on installation of the bridge substituent prior to BCP core construction, leading to lengthy step counts and often nonmodular sequences. While challenging, direct functionalization of the strong bridge BCP C-H bonds would offer a more streamlined pathway to diverse 2-substituted BCPs. Here, we report a generalizable synthetic linchpin strategy for bridge functionalization via radical C-H abstraction of the BCP core. Through mild generation of a strong hydrogen atom abstractor, we rapidly synthesize novel 2-substituted BCP synthetic linchpins in one pot. These synthetic linchpins then serve as common precursors to complex 2-substituted BCPs, allowing one-step access to a number of previously inaccessible electrophile and nucleophile fragments at the 2-position via two new metallaphotoredox protocols. Altogether, this platform enables the expedient synthesis of four pharmaceutical analogues, all of which show similar or improved properties compared to their aryl-containing equivalents, demonstrating the potential of these 2-substituted BCPs in drug development.

2.
Chem Commun (Camb) ; 57(38): 4694-4697, 2021 May 11.
Article in English | MEDLINE | ID: mdl-33977984

ABSTRACT

We designed and synthesized two resorcin[4]arene scaffolds with four phosphate binding groups. The ligands effectively bind in at least a tridentate fashion at low surface coverage. The superior binding affinity is demonstrated using solution NMR spectroscopy and exceeds that of single phosphonates.

3.
Org Biomol Chem ; 19(16): 3628-3633, 2021 04 28.
Article in English | MEDLINE | ID: mdl-33908553

ABSTRACT

A modular synthetic platform for the construction of flexible glycoluril-derived molecular tweezers was developed. The binding properties of four exemplary supramolecular hosts obtained via this approach towards 16 organic amines were investigated by means of 1H NMR titration. In this work, we compare the Ka values obtained this way with those of three structurally related molecular tweezers and provide a computational approach towards an explanation of the observed behavior of those novel hosts. The results showcase that certain structural modifications lead to very potent and selective binders of natural polyamines, with observed binding of spermine below 10 nM.

4.
Angew Chem Int Ed Engl ; 59(30): 12387-12391, 2020 07 20.
Article in English | MEDLINE | ID: mdl-32453866

ABSTRACT

The site-selective C-H oxidation of unactivated positions in aliphatic ammonium chains poses a tremendous synthetic challenge, for which a solution has not yet been found. Here, we report the preferential oxidation of the strongly deactivated C3/C4 positions of aliphatic ammonium substrates by employing a novel supramolecular catalyst. This chimeric catalyst was synthesized by linking the well-explored catalytic moiety Fe(pdp) to an alkyl ammonium binding molecular tweezer. The results highlight the vast potential of overriding the intrinsic reactivity in chemical reactions by guiding catalysis using supramolecular host structures that enable a precise orientation of the substrates.

5.
Chemistry ; 25(56): 12900-12904, 2019 Oct 08.
Article in English | MEDLINE | ID: mdl-31348566

ABSTRACT

A molecular tweezer based on a glycoluril-derived framework bearing four phosphate groups was synthesized and shown to be capable of binding organic amines in aqueous solution. This work reports the Ka values for 30 complexes of this molecular tweezer and amine guests, determined by means of 1 H NMR titrations. Both the hydrophobic cavity and the phosphate groups contribute to the binding. Bulkier molecules and molecules bearing negatively charged groups like carboxylates in amino acids bind less tightly due to a steric clash and coulombic repulsion. The narrow cavity and the strong ionic interactions of the phosphate groups with ammonium guests favor binding of aliphatic diamines. These binding properties clearly distinguish this system from structurally related molecular clips and tweezers.

6.
Org Lett ; 18(24): 6472-6475, 2016 12 16.
Article in English | MEDLINE | ID: mdl-27978701

ABSTRACT

An electron-deficient amide is utilized as a directing group to functionalize nonactivated C(sp3)-H bonds through radical 1,5-hydrogen abstraction. The γ-bromoamides formed are subsequently converted to γ-lactones under mild conditions. The method described is not limited to tertiary and secondary positions but also allows functionalization of primary nonactivated sp3-hybridized positions in a one-pot sequence. In addition, the broad functional group tolerance renders this method suitable for the late-stage introduction of γ-lactones into complex carbon frameworks.

SELECTION OF CITATIONS
SEARCH DETAIL
...