Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 129(17): 173901, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36332246

ABSTRACT

We experimentally observe lasing in a hexamer plasmonic lattice and find that, when tuning the scale of the unit cell, the polarization properties of the emission change. By a theoretical analysis, we identify the lasing modes as quasi-bound-states in continuum of topological charges of zero, one, or two. A T-matrix simulation of the structure reveals that the mode quality (Q) factors depend on the scale of the unit cell, with highest-Q modes favored by lasing. The system thus shows a loss-driven transition between lasing in modes of trivial and high-order topological charge.

2.
ACS Photonics ; 9(1): 224-232, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35083367

ABSTRACT

Plasmonic lattices of metal nanoparticles have emerged as an effective platform for strong light-matter coupling, lasing, and Bose-Einstein condensation. However, the full potential of complex unit cell structures has not been exploited. On the other hand, bound states in continuum (BICs) have attracted attention, as they provide topologically protected optical modes with diverging quality factors. Here, we show that quadrumer nanoparticle lattices enable lasing in a quasi-BIC mode with a highly out-of-plane character. By combining theory with polarization-resolved measurements of the emission, we show that the lasing mode has a topological charge. Our analysis reveals that the mode is primarily polarized out-of-plane as a result of the quadrumer structure. The quality factors of the out-of-plane BIC modes of the quadrumer array can be exceedingly high. Our results unveil the power of complex multiparticle unit cells in creating topologically protected high-Q modes in periodic nanostructures.

SELECTION OF CITATIONS
SEARCH DETAIL
...