Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 11: 368, 2020.
Article in English | MEDLINE | ID: mdl-32318084

ABSTRACT

Genetic methodologies for reducing nicotine accumulation in the tobacco plant (Nicotiana tabacum L.) are of interest because of potential future regulations that could mandate lowering of this alkaloid in conventional cigarettes. Inactivation of tobacco genes such as the Berberine Bridge Like (BBL) gene family believed to encode for enzymes involved in one of the latter steps of nicotine biosynthesis could be a viable strategy for producing new tobacco cultivars with ultra-low leaf nicotine accumulation. We introduced deleterious mutations generated via ethyl methanesulfonate treatment of seed or gene editing into six known members of the BBL gene family and assembled them in different combinations to assess their relative contribution to nicotine accumulation. Significant reductions (up to 17-fold) in percent leaf nicotine were observed in genotypes homozygous for combined mutations in BBL-a, BBL-b, and BBL-c. The addition of mutations in BBL-d1, BBL-d2, and BBL-e had no additional significant effect on lowering of nicotine levels in the genetic background studied. Reduced nicotine levels were associated with reductions in cured leaf yields (up to 29%) and cured leaf quality (up to 15%), evidence of physiological complexities within the tobacco plant related to the nicotine biosynthetic pathway. Further nicotine reductions were observed for a BBL mutant line cultivated under a modified production regime in which apical inflorescences were not removed, but at the expense of further yield reductions. Plants in which BBL mutations were combined with naturally occurring recessive alleles at the Nic1 and Nic2 loci exhibited further reductions in percent nicotine, but no plant produced immeasurable levels of this alkaloid. Findings may suggest the existence of a minor, alternative pathway for nicotine biosynthesis in N. tabacum. The described genetic materials may be of value for the manufacture of cigarettes with reduced nicotine levels and for future studies to better understand the molecular biology of alkaloid accumulation in tobacco.

2.
Plant Dis ; 104(6): 1638-1646, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32310718

ABSTRACT

Phytophthora nicotianae is an oomycete that causes black shank, one of the most economically important diseases affecting tobacco production worldwide. Identification and introgression of novel genetic variability affecting partial genetic resistance to this pathogen is important because of the increased durability of partial resistance over time as compared with genes conferring immunity. A previous mapping study identified a quantitative trait locus (QTL), hereafter designated as Phn15.1, with a major effect on P. nicotianae resistance in tobacco. In this research, we describe significantly improved resistance of nearly isogenic lines (NILs) of flue-cured tobacco carrying the introgressed Phn15.1 region derived from highly resistant cigar tobacco cultivar Beinhart 1000. The Phn15.1 region appeared to act in an additive or partially dominant manner to positively affect resistance. To more finely resolve the position of the gene or genes underlying the Phn15.1 effect, the QTL was mapped with an increased number of molecular markers (single-nucleotide polymorphisms) identified to reside within the region. Development and evaluation of subNILs containing varying amounts of Beinhart 1000-derived Phn15.1-associated genetic material permitted the localization of the QTL to a genetic interval of approximately 2.7 centimorgans. Importantly, we were able to disassociate the Beinhart 1000 Phn15.1 resistance alleles from a functional NtCPS2 allele(s) which contributes to the accumulation of a diterpene leaf surface exudate considered undesirable for flue-cured and burley tobacco. Information from this research should be of value for marker-assisted introgression of Beinhart 1000-derived partial black shank resistance into flue-cured and burley tobacco breeding programs.


Subject(s)
Phytophthora , Alleles , Plant Diseases , Quantitative Trait Loci , Nicotiana
3.
G3 (Bethesda) ; 7(1): 299-308, 2017 01 05.
Article in English | MEDLINE | ID: mdl-27866151

ABSTRACT

Soybean oil is highly unsaturated but oxidatively unstable, rendering it nonideal for food applications. Until recently, the majority of soybean oil underwent partial chemical hydrogenation, which produces trans fats as an unavoidable consequence. Dietary intake of trans fats and most saturated fats are conclusively linked to negative impacts on cholesterol levels and cardiovascular health. Two major soybean oil breeding targets are: (1) to reduce or eliminate the need for chemical hydrogenation, and (2) to replace the functional properties of partially hydrogenated soybean oil. One potential solution is the elevation of seed stearic acid, a saturated fat which has no negative impacts on cardiovascular health, from 3 to 4% in typical cultivars to > 20% of the seed oil. We performed QTL analysis of a population developed by crossing two mutant lines, one with a missense mutation affecting a stearoyl-acyl-carrier protein desaturase gene resulting in ∼11% seed stearic acid crossed to another mutant, A6, which has 24-28% seed stearic acid. Genotyping-by-sequencing (GBS)-based QTL mapping identified 21 minor and major effect QTL for six seed oil related traits and plant height. The inheritance of a large genomic deletion affecting chromosome 14 is the basis for largest effect QTL, resulting in ∼18% seed stearic acid. This deletion contains SACPD-C and another gene(s); loss of both genes boosts seed stearic acid levels to ≥ 18%. Unfortunately, this genomic deletion has been shown in previous studies to be inextricably correlated with reduced seed yield. Our results will help inform and guide ongoing breeding efforts to improve soybean oil oxidative stability.


Subject(s)
Glycine max/genetics , Plant Proteins/genetics , Seeds/metabolism , Stearic Acids/metabolism , Base Sequence , Genes, Plant/genetics , Genotype , Mutation, Missense/genetics , Phenotype , Seeds/genetics , Soybean Oil/genetics , Soybean Oil/metabolism , Glycine max/metabolism
4.
Biol Reprod ; 87(4): 90, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22933516

ABSTRACT

Spermatogonial stem cell (SSC) self-renewal and differentiation are required for continuous production of spermatozoa and long-term fertility. Studying SSCs in vivo remains challenging because SSCs are rare cells and definitive molecular markers for their identification are lacking. The development of a method for propagating SSCs in vitro greatly facilitated analysis of SSCs. The cultured cells grow as clusters of a dynamic mixture of "true" stem cells and differentiating progenitor cells. Cells in the stem/progenitor culture system share many properties with spermatogonia in vivo; however, to fully exploit it as a model for spermatogonial development, new assays are needed that account for the dynamic heterogeneity inherent in the culture system. Here, assays were developed for quantifying dynamics of cultures of stem/progenitor cells that expressed histone-green fluorescent protein (GFP). First, we built on published results showing that cluster formation in vitro reliably predicts the relative number of SSCs. The GFP-based in vitro cluster assay allows quantification of SSCs with significantly fewer resources than a transplantation assay. Second, we compared the dynamics of differentiation in two experimental paradigms by imaging over a 17-day time frame. Finally, we performed short-term live imaging and observed cell migration, coordinated cell proliferation, and cell death resembling that of spermatogonia in the testes. The methods that we present provide a foundation for the use of fluorescent reporters in future microscopy-based high-throughput screens by using living spermatogonial stem/progenitor cultures applicable to toxicology, contraceptive discovery, and identification of regulators of self-renewal and differentiation.


Subject(s)
Biological Assay/methods , Cell Culture Techniques , Spermatogonia/physiology , Stem Cells/physiology , Animals , Cell Death , Cell Proliferation , Cell Survival , Cells, Cultured , Green Fluorescent Proteins/analysis , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Male , Mice , Mice, Inbred DBA , Microscopy, Fluorescence/methods , Spermatogonia/metabolism , Spermatogonia/ultrastructure , Stem Cells/metabolism , Stem Cells/ultrastructure , Transfection
5.
Reprod Toxicol ; 31(4): 454-63, 2011 May.
Article in English | MEDLINE | ID: mdl-21295132

ABSTRACT

Imatinib mesylate is among a growing number of effective cancer drugs that provide molecularly targeted therapy; however, imatinib causes reproductive defects in rodents. The availability of an in vitro system for screening the effect of drugs on spermatogenesis would be beneficial. The imatinib targets, KIT and platelet derived growth factor receptor beta (PDGFRB), were shown here to be expressed in "germline stem" (GS) cell cultures that contain spermatogonia, including spermatogonial stem cells (SSCs). GS cell cultures were utilized to determine whether imatinib affects SSC self renewal or differentiation. GS cells grown in imatinib retained self renewal based on multiple assays, including transplantation. However, growth in imatinib led to decreased numbers of differentiated spermatogonia and reduced culture growth consistent with the known requirement for KIT in survival and proliferation of spermatogonia. These results build upon the in vivo studies and support the possibility of utilizing GS cell cultures for preclinical drug tests.


Subject(s)
Antineoplastic Agents/toxicity , Cell Proliferation/drug effects , Piperazines/toxicity , Protein Kinase Inhibitors/toxicity , Pyrimidines/toxicity , Spermatogenesis/drug effects , Spermatogonia/drug effects , Stem Cells/drug effects , Animal Testing Alternatives , Animals , Benzamides , Cells, Cultured , Coculture Techniques , Imatinib Mesylate , Male , Mice , Mice, Nude , Molecular Targeted Therapy/adverse effects , Proto-Oncogene Proteins c-kit/antagonists & inhibitors , Proto-Oncogene Proteins c-kit/metabolism , Receptor, Platelet-Derived Growth Factor beta/antagonists & inhibitors , Receptor, Platelet-Derived Growth Factor beta/metabolism , Spermatogonia/enzymology , Spermatogonia/pathology , Spermatogonia/transplantation , Stem Cell Transplantation , Stem Cells/enzymology , Stem Cells/pathology , Time Factors , Toxicity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...