Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 266(Pt 1): 115074, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32629209

ABSTRACT

Several populations of the amphipod, Hyalella azteca, have developed resistance to pyrethroid insecticides due to non-target exposure, but the dominance of the resistance trait is unknown. The current study investigated the dominance level of point mutations in natural populations of insecticide-resistant H. azteca and determined whether H. azteca from different clades with and without resistant alleles can hybridize and produce viable offspring. A parent generation (P0) of non-resistant homozygous wild type H. azteca was crossbred with pyrethroid-resistant homozygous mutant animals and the tolerance of the filial 1 (F1) generation to the pyrethroid insecticide, permethrin, was measured. Then the genotypes of the F1 generation was examined to assure heterozygosity. The resistant parents had permethrin LC50 values that ranged from 52 to 82 times higher than the non-resistant animals and both crossbreeding experiments produced heterozygous hybrid offspring that had LC50 values similar to the non-resistant H. azteca parent. Dominance levels calculated for each of the crosses showed values close to 0, confirming that the L925I and L925V mutations were completely recessive. The lack of reproduction by hybrids of the C x D breeding confirmed that these clades are reproductively isolated and therefore introgression of adaptive alleles across these clades is unlikely. Potential evolutionary consequences of this selection include development of population bottlenecks, which may arise leading to fitness costs and reduced genetic diversity of H. azteca.


Subject(s)
Amphipoda , Insecticides/analysis , Pyrethrins , Water Pollutants, Chemical/analysis , Animals , Hybridization, Genetic , Insecticide Resistance , Permethrin
2.
Environ Pollut ; 235: 39-46, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29274536

ABSTRACT

Pyrethroid-resistant Hyalella azteca with voltage-gated sodium channel mutations have been identified at multiple locations throughout California. In December 2013, H. azteca were collected from Mosher Slough in Stockton, CA, USA, a site with reported pyrethroid (primarily bifenthrin and cyfluthrin) sediment concentrations approximately twice the 10-d LC50 for laboratory-cultured H. azteca. These H. azteca were shipped to Southern Illinois University Carbondale and have been maintained in pyrethroid-free culture since collection. Even after 22 months in culture, resistant animals had approximately 53 times higher tolerance to permethrin than non-resistant laboratory-cultured H. azteca. Resistant animals held in culture also lacked the wild-type allele at the L925 locus, and had non-synonymous substitutions that resulted in either a leucine-isoleucine or leucine-valine substitution. Additionally, animals collected from the same site nearly three years later were again resistant to the pyrethroid permethrin. When resistant animals were compared to non-resistant animals, they showed lower reproductive capacity, lower upper thermal tolerance, and the data suggested greater sensitivity to, 4, 4'-dichlorodiphenyltrichloroethane (DDT), copper (II) sulfate, and sodium chloride. Further testing of the greater heat and sodium chloride sensitivity of the resistant animals showed these effects to be unrelated to clade association. Fitness costs associated with resistance to pyrethroids are well documented in pest species (including mosquitoes, peach-potato aphids, and codling moths) and we believe that H. azteca collected from Mosher Slough also have fitness costs associated with the developed resistance.


Subject(s)
Amphipoda/drug effects , Insecticides/toxicity , Nitriles/toxicity , Pyrethrins/toxicity , Water Pollutants, Chemical/toxicity , Amphipoda/physiology , Animals , Drug Resistance , Female , Insecticides/analysis , Male , Permethrin/toxicity , Water Pollutants, Chemical/analysis
3.
Environ Pollut ; 220(Pt A): 375-382, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27756597

ABSTRACT

The recent discovery of pyrethroid-resistant Hyalella azteca populations in California, USA suggests there has been significant exposure of aquatic organisms to these terrestrially-applied insecticides. Since resistant organisms are able to survive in relatively contaminated habitats they may experience greater pyrethroid bioaccumulation, subsequently increasing the risk of those compounds transferring to predators. These issues were evaluated in the current study following toxicity tests in water with permethrin which showed the 96-h LC50 of resistant H. azteca (1670 ng L-1) was 53 times higher than that of non-resistant H. azteca (31.2 ng L-1). Bioaccumulation was compared between resistant and non-resistant H. azteca by exposing both populations to permethrin in water and then measuring the tissue concentrations attained. Our results indicate that resistant and non-resistant H. azteca have similar potential to bioaccumulate pyrethroids at the same exposure concentration. However, significantly greater bioaccumulation occurs in resistant H. azteca at exposure concentrations non-resistant organisms cannot survive. To assess the risk of pyrethroid trophic transfer, permethrin-dosed resistant H. azteca were fed to fathead minnows (Pimephales promelas) for four days, after which bioaccumulation of permethrin and its biotransformation products in fish tissues were measured. There were detectable concentrations of permethrin in fish tissues after they consumed dosed resistant H. azteca. These results show that bioaccumulation potential is greater in organisms with pyrethroid resistance and this increases the risk of trophic transfer when consumed by a predator. The implications of this study extend to individual fitness, populations and food webs.


Subject(s)
Amphipoda/metabolism , Cyprinidae/metabolism , Insecticides/metabolism , Permethrin/metabolism , Water Pollutants, Chemical/metabolism , Amphipoda/drug effects , Animals , California , Food Chain , Insecticide Resistance , Insecticides/analysis , Insecticides/toxicity , Permethrin/analysis , Permethrin/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...