Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Chem Rev ; 124(9): 5167-5226, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38683680

ABSTRACT

This review discusses the research being performed on ionic liquids for the separation of fluorocarbon refrigerant mixtures. Fluorocarbon refrigerants, invented in 1928 by Thomas Midgley Jr., are a unique class of working fluids that are used in a variety of applications including refrigeration. Fluorocarbon refrigerants can be categorized into four generations: chlorofluorocarbons, hydrochlorofluorocarbons, hydrofluorocarbons, and hydrofluoroolefins. Each generation of refrigerants solved a key problem from the previous generation; however, each new generation has relied on more complex mixtures that are often zeotropic, near azeotropic, or azeotropic. The complexity of the refrigerants used and the fact that many refrigerants form azeotropes when mixed makes handling the refrigerants at end of life extremely difficult. Today, less than 3% of refrigerants that enter the market are recycled. This is due to a lack of technology in the refrigerant reclaim market that would allow for these complex, azeotropic refrigerant mixtures to be separated into their components in order to be effectively reused, recycled, and if needed repurposed. As the market for recovering and reclaiming refrigerants continues to grow, there is a strong need for separation technology. Ionic liquids show promise for separating azeotropic refrigerant mixtures as an entrainer in extractive distillation process. Ionic liquids have been investigated with refrigerants for this application since the early 2000s. This review will provide a comprehensive summary of the physical property measurements, equations of state modeling, molecular simulations, separation techniques, and unique materials unitizing ionic liquids for the development of an ionic-liquid-based separation process for azeotropic refrigerant mixtures.

2.
Neurobiol Learn Mem ; 185: 107535, 2021 11.
Article in English | MEDLINE | ID: mdl-34624524

ABSTRACT

Context memory formation is a complex process that requires transcription in many subregions of the brain including the dorsal hippocampus and retrosplenial cortex. One critical gene necessary for memory formation is the circadian gene Period1 (Per1), which has been shown to function in the dorsal hippocampus to modulate spatial memory in addition to its well-documented role in regulating the diurnal clock within the suprachiasmatic nucleus (SCN). We recently found that alterations in Per1 expression in the dorsal hippocampus can modulate spatial memory formation, with reduced hippocampal Per1 impairing memory and overexpression of Per1 ameliorating age-related impairments in spatial memory. Whether Per1 similarly functions within other memory-relevant brain regions is currently unknown. Here, to test whether Per1 is a general mechanism that modulates memory across the brain, we tested the role of Per1 in the retrosplenial cortex (RSC), a brain region necessary for context memory formation. First, we demonstrate that context fear conditioning drives a transient increase in Per1 mRNA expression within the anterior RSC that peaks 60 m after training. Next, using HSV-CRISPRi-mediated knockdown of Per1, we show that reducing Per1 within the anterior RSC before context fear acquisition impairs memory in both male and female mice. In contrast, overexpressing Per1 with either HSV-CRISPRa or HSV-Per1 before context fear acquisition drives a sex-specific memory impairment; males show impaired context fear memory whereas females are not affected by Per1 overexpression. Finally, as Per1 levels are known to rhythmically oscillate across the day/night cycle, we tested the possibility that Per1 overexpression might have different effects on memory depending on the time of day. In contrast to the impairment in memory we observed during the daytime, Per1 overexpression has no effect on context fear memory during the night in either male or female mice. Together, our results indicate that Per1 modulates memory in the anterior retrosplenial cortex in addition to its documented role in regulating memory within the dorsal hippocampus, although this role may differ between males and females.


Subject(s)
Fear/physiology , Gyrus Cinguli/physiology , Memory Consolidation , Period Circadian Proteins/physiology , Animals , CRISPR-Associated Protein 9 , CRISPR-Cas Systems , Circadian Clocks/genetics , Circadian Clocks/physiology , Conditioning, Classical/physiology , Female , Gene Editing , Gyrus Cinguli/metabolism , Male , Memory Consolidation/physiology , Mice , Mice, Inbred C57BL , Sex Factors
3.
Sci Rep ; 10(1): 22306, 2020 12 18.
Article in English | MEDLINE | ID: mdl-33339846

ABSTRACT

The pollination services provided by bees are essential for supporting natural and agricultural ecosystems. However, bee population declines have been documented across the world. Many of the factors known to undermine bee health (e.g., poor nutrition) can decrease immunocompetence and, thereby, increase bees' susceptibility to diseases. Given the myriad of stressors that can exacerbate disease in wild bee populations, assessments of the relative impact of landscape habitat conditions on bee pathogen prevalence are needed to effectively conserve pollinator populations. Herein, we assess how landscape-level conditions, including various metrics of floral/nesting resources, insecticides, weather, and honey bee (Apis mellifera) abundance, drive variation in wild bumble bee (Bombus impatiens) pathogen loads. Specifically, we screened 890 bumble bee workers from varied habitats in Pennsylvania, USA for three pathogens (deformed wing virus, black queen cell virus, and Vairimorpha (= Nosema) bombi), Defensin expression, and body size. Bumble bees collected within low-quality landscapes exhibited the highest pathogen loads, with spring floral resources and nesting habitat availability serving as the main drivers. We also found higher loads of pathogens where honey bee apiaries are more abundant, a positive relationship between Vairimorpha loads and rainfall, and differences in pathogens by geographic region. Collectively, our results highlight the need to support high-quality landscapes (i.e., those with abundant floral/nesting resources) to maintain healthy wild bee populations.


Subject(s)
Bees/physiology , Dicistroviridae/pathogenicity , Microsporidia/pathogenicity , Pollination/physiology , Agriculture , Animals , Bees/anatomy & histology , Bees/microbiology , Bees/virology , Ecosystem , Pennsylvania , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...