Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(14)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37512416

ABSTRACT

Silicon nitride ceramics excel by superior mechanical, thermal, and chemical properties that render the material suitable for applications in several technologically challenging fields. In addition to high temperature, high stress applications have been implemented in aerospace gas turbines and internal combustion engines as well as in tools for metal manufacturing, forming, and machining. During the past few decades, extensive research has been performed to make silicon nitride suitable for use in a variety of biomedical applications. This contribution discusses the structure-property-application relations of silicon nitride. A comparison with traditional oxide-based ceramics confirms that the advantageous mechanical and biomedical properties of silicon nitride are based on a high proportion of covalent bonds. The present biomedical applications are reviewed here, which include intervertebral spacers, orthopedic and dental implants, antibacterial and antiviral applications, and photonic parts for medical diagnostics.

2.
Materials (Basel) ; 12(13)2019 Jun 27.
Article in English | MEDLINE | ID: mdl-31252516

ABSTRACT

Calcium (titanium, zirconium) hexaorthophosphates with a [NZP] (sodium zirconium phosphate) structure belonging to the NaSiCon (Na Superionic Conductor) family were deposited by atmospheric plasma spraying onto the surfaces of Ti6Al4V substrates. (NaSiCon sensu strictu refers to solids with the chemical formula Na1+xZr2SixP3-xO12, 0 < x < 3. In a broader sense, it is also used for similar compounds where Na, Zr and/or Si are replaced by isovalent elements). The microstructure of the coatings revealed the incongruent melting of the precursor material as ascertained by electron probe microanalysis (EPMA). The adhesion of the coatings to the substrate surface was within the limits specified for biomedical coatings. The solubility of the coatings was tested by immersion in 0.2 molar tris-hydroxymethyl-amino-methane-HCl (TRIS-HCl) buffer and found to be at least one order of magnitude lower than that of conventional hydroxylapatite coatings deposited under comparable conditions. In vitro biocompatibility tests with primary rat bone marrow cells (BMCs) showed a substantial cell proliferation in the presence of fetal bovine serum. Animal tests confirmed that coatings based on calcium (titanium, zirconium) hexaorthophosphates applied to Ti6Al4V rods implanted in the femoral medulla of sheep led to the strong neoformation of dense bone at a stable interface implant-bioceramic coating without coating delamination. Hence, based on their multifarious advantageous properties in the biomedical context, CaTi4-xZrx(PO4)6 ceramics may be considered the 'Sleeping Beauty' of osseoconductive coatings for the stem of hip endoprostheses and dental root implants, osteosynthetic fixation devices, and bioelectric devices including bone growth stimulators.

4.
Biomaterials ; 27(6): 823-31, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16139352

ABSTRACT

Hydroxyapatite and 'duplex' hydroxyapatite + titania bond coat layers were deposited onto Ti6Al4V substrates by atmospheric plasma spraying (APS) at moderate plasma enthalpies. From as-sprayed coatings and coatings incubated in simulated body fluid (r-SBF) electron-transparent samples were generated by focused ion beam (FIB) excavation and investigated by STEM/TEM in conjunction with energy-dispersive X-ray analysis (EDX), electron diffraction (ED), and electron energy loss spectroscopy (EELS). Adjacent to the metal surface a thin layer of amorphous calcium phosphate (ACP) was deposited whose Ca/P ratio is determined by the presence or absence of the bond coat. No clear indication of a Ca-Ti oxide reaction layer was found at the interface titania bond coat/calcium phosphate. After in vitro incubation of duplex coatings for 24 weeks Ca-deficient defect apatite needles precipitated from ACP. During incubation of hydroxyapatite without a bond coat for 1 week diffusion bands were formed within the ACP of 1-2 microm width parallel to the interface metal/coating, presumably by a dissolution-precipitation sequence.


Subject(s)
Atmosphere/chemistry , Calcium Phosphates/chemistry , Titanium/chemistry , Alloys , Arsenic/chemistry , Body Fluids/chemistry , Durapatite/chemistry , Microscopy, Electron, Transmission , Time Factors
5.
J Med Assoc Thai ; 86 Suppl 2: S422-31, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12930020

ABSTRACT

BACKGROUND: One important clinical application of hydroxyapatite (HA) is coating on metal implants to stimulate osteo-integration thus enhancing fixation of the implant to bone, especially plasma-sprayed HA coating applied on Ti alloy substrate. The poor bonding strength between HA and Ti alloy has been of great concern to orthopedists. The biocomptable coat such as Ti alloy (TiO2) coat is one method to improve adhesive strength. OBJECTIVE: The objective of this study was to detect and analyze possible differences in bone formation, bone integration and tissue reaction between group I (uncoated Titanium), group II (Hydroxyapatite coated Titanium), and group III (Hydroxyapatite/TiO2 coated Titanium) implant specimens when embedded into bony hosts. METHOD: Rectangular specimens were implanted into the femoral bone of adult dogs in randomly different sites including: proximal left, proximal right, distal left, distal right. The tailor-made implant specimens were inserted in 5 x 5 mm preprepared sockets. Radiographic evaluation was taken at 0, 1, 3 and 6 months. All animals were sacrificed at 3 and 6 months post implantation. The femoral bone containing implants were dissected and then prepared to be further investigated. The bone-implant interface was analyzed by H&E surface staining, radiography and scanning electron microscopy. Data concerning percentage of osteointegration and adhesiveness of hydroxyapatite layer from different kinds of implants along the entire length of each implants were collected and analyzed for evaluation of any significant differences. RESULTS: No osteo-integration was noted in Group I, but there was 25.57 per cent osteointegration in Group II and 28.63 per cent in Group III. No statistically significant differences were observed between Group II and Group III. However, the coating layer in Group II was found to have detached, in some area, from the metal substrate. Histologically, no adverse tissue reaction was found around any kind of implant. CONCLUSION: Biocompatable bond coat is one of the methods to improve adhesive strength of hydroxyapatite coated implants. In the present study it could be concluded that, besides the improvement in adhesiveness, the intervening TiO2 coating layer had no negative effect concerning bone formation and integration and also showed no adverse surrounding soft tissue reaction.


Subject(s)
Biocompatible Materials/pharmacology , Durapatite/pharmacology , Femur/drug effects , Hydroxyapatites/pharmacology , Osteogenesis/drug effects , Prostheses and Implants , Titanium/pharmacology , Animals , Disease Models, Animal , Dogs , Femur/pathology , Femur/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...