Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 110(51): 20651-6, 2013 Dec 17.
Article in English | MEDLINE | ID: mdl-24297900

ABSTRACT

Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from other vertebrates. In contrast to the platypus, the only other venomous vertebrate with a sequenced genome, we find that snake toxin genes evolve through several distinct co-option mechanisms and exhibit surprisingly variable levels of gene duplication and directional selection that correlate with their functional importance in prey capture. The enigmatic accessory venom gland shows a very different pattern of toxin gene expression from the main venom gland and seems to have recruited toxin-like lectin genes repeatedly for new nontoxic functions. In addition, tissue-specific microRNA analyses suggested the co-option of core genetic regulatory components of the venom secretory system from a pancreatic origin. Although the king cobra is limbless, we recovered coding sequences for all Hox genes involved in amniote limb development, with the exception of Hoxd12. Our results provide a unique view of the origin and evolution of snake venom and reveal multiple genome-level adaptive responses to natural selection in this complex biological weapon system. More generally, they provide insight into mechanisms of protein evolution under strong selection.


Subject(s)
Adaptation, Biological/physiology , Elapid Venoms , Elapidae , Evolution, Molecular , Genome/physiology , Transcriptome/physiology , Animals , Elapid Venoms/genetics , Elapid Venoms/metabolism , Elapidae/genetics , Elapidae/metabolism , Exocrine Glands/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
2.
Mol Biol Evol ; 30(11): 2369-82, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23913097

ABSTRACT

microRNAs (miRNAs) are a key component of gene regulatory networks and have been implicated in the regulation of virtually every biological process found in multicellular eukaryotes. What makes them interesting from a phylogenetic perspective is the high conservation of primary sequence between taxa, their accrual in metazoan genomes through evolutionary time, and the rarity of secondary loss in most metazoan taxa. Despite these properties, the use of miRNAs as phylogenetic markers has not yet been discussed within a clear conceptual framework. Here we highlight five properties of miRNAs that underlie their utility in phylogenetics: 1) The processes of miRNA biogenesis enable the identification of novel miRNAs without prior knowledge of sequence; 2) The continuous addition of miRNA families to metazoan genomes through evolutionary time; 3) The low level of secondary gene loss in most metazoan taxa; 4) The low substitution rate in the mature miRNA sequence; and 5) The small probability of convergent evolution of two miRNAs. Phylogenetic analyses using both Bayesian and parsimony methods on a eumetazoan miRNA data set highlight the potential of miRNAs to become an invaluable new tool, especially when used as an additional line of evidence, to resolve previously intractable nodes within the tree of life.


Subject(s)
Evolution, Molecular , MicroRNAs/genetics , MicroRNAs/metabolism , Phylogeny , Animals , Base Sequence , Bayes Theorem , Conserved Sequence , Gene Regulatory Networks , Genome , Humans , Secondary Metabolism/genetics , Species Specificity
3.
Biol Lett ; 8(1): 104-7, 2012 Feb 23.
Article in English | MEDLINE | ID: mdl-21775315

ABSTRACT

Despite much interest in amniote systematics, the origin of turtles remains elusive. Traditional morphological phylogenetic analyses place turtles outside Diapsida-amniotes whose ancestor had two fenestrae in the temporal region of the skull (among the living forms the tuatara, lizards, birds and crocodilians)-and allied with some unfenestrate-skulled (anapsid) taxa. Nonetheless, some morphological analyses place turtles within Diapsida, allied with Lepidosauria (tuatara and lizards). Most molecular studies agree that turtles are diapsids, but rather than allying them with lepidosaurs, instead place turtles near or within Archosauria (crocodilians and birds). Thus, three basic phylogenetic positions for turtles with respect to extant Diapsida are currently debated: (i) sister to Diapsida, (ii) sister to Lepidosauria, or (iii) sister to, or within, Archosauria. Interestingly, although these three alternatives are consistent with a single unrooted four-taxon tree for extant reptiles, they differ with respect to the position of the root. Here, we apply a novel molecular dataset, the presence versus absence of specific microRNAs, to the problem of the phylogenetic position of turtles and the root of the reptilian tree, and find that this dataset unambiguously supports a turtle + lepidosaur group. We find that turtles and lizards share four unique miRNA gene families that are not found in any other organisms' genome or small RNA library, and no miRNAs are found in all diapsids but not turtles, or in turtles and archosaurs but not in lizards. The concordance between our result and some morphological analyses suggests that there have been numerous morphological convergences and reversals in reptile phylogeny, including the loss of temporal fenestrae.


Subject(s)
Lizards/genetics , MicroRNAs/genetics , Phylogeny , Turtles/genetics , Animals , Base Sequence , Molecular Sequence Data , Sequence Analysis, RNA
4.
Proc Natl Acad Sci U S A ; 108(14): 5690-5, 2011 Apr 05.
Article in English | MEDLINE | ID: mdl-21402926

ABSTRACT

Flies are one of four superradiations of insects (along with beetles, wasps, and moths) that account for the majority of animal life on Earth. Diptera includes species known for their ubiquity (Musca domestica house fly), their role as pests (Anopheles gambiae malaria mosquito), and their value as model organisms across the biological sciences (Drosophila melanogaster). A resolved phylogeny for flies provides a framework for genomic, developmental, and evolutionary studies by facilitating comparisons across model organisms, yet recent research has suggested that fly relationships have been obscured by multiple episodes of rapid diversification. We provide a phylogenomic estimate of fly relationships based on molecules and morphology from 149 of 157 families, including 30 kb from 14 nuclear loci and complete mitochondrial genomes combined with 371 morphological characters. Multiple analyses show support for traditional groups (Brachycera, Cyclorrhapha, and Schizophora) and corroborate contentious findings, such as the anomalous Deuterophlebiidae as the sister group to all remaining Diptera. Our findings reveal that the closest relatives of the Drosophilidae are highly modified parasites (including the wingless Braulidae) of bees and other insects. Furthermore, we use micro-RNAs to resolve a node with implications for the evolution of embryonic development in Diptera. We demonstrate that flies experienced three episodes of rapid radiation--lower Diptera (220 Ma), lower Brachycera (180 Ma), and Schizophora (65 Ma)--and a number of life history transitions to hematophagy, phytophagy, and parasitism in the history of fly evolution over 260 million y.


Subject(s)
Adaptation, Biological/genetics , Biological Evolution , Diptera/anatomy & histology , Diptera/genetics , Phylogeny , Animals , Base Sequence , Bayes Theorem , Gene Library , Likelihood Functions , MicroRNAs/genetics , Models, Genetic , Molecular Sequence Data , Sequence Analysis, DNA , Species Specificity
5.
Proc Natl Acad Sci U S A ; 107(45): 19379-83, 2010 Nov 09.
Article in English | MEDLINE | ID: mdl-20959416

ABSTRACT

Hagfish and lampreys are the only living representatives of the jawless vertebrates (agnathans), and compared with jawed vertebrates (gnathostomes), they provide insight into the embryology, genomics, and body plan of the ancestral vertebrate. However, this insight has been obscured by controversy over their interrelationships. Morphological cladistic analyses have identified lampreys and gnathostomes as closest relatives, whereas molecular phylogenetic studies recover a monophyletic Cyclostomata (hagfish and lampreys as closest relatives). Here, we show through deep sequencing of small RNA libraries, coupled with genomic surveys, that Cyclostomata is monophyletic: hagfish and lampreys share 4 unique microRNA families, 15 unique paralogues of more primitive microRNA families, and 22 unique substitutions to the mature gene products. Reanalysis of morphological data reveals that support for cyclostome paraphyly was based largely on incorrect character coding, and a revised dataset is not decisive on the mono- vs. paraphyly of cyclostomes. Furthermore, we show fundamental conservation of microRNA expression patterns among lamprey, hagfish, and gnathostome organs, implying that the role of microRNAs within specific organs is coincident with their appearance within the genome and is conserved through time. Together, these data support the monophyly of cyclostomes and suggest that the last common ancestor of all living vertebrates was a more complex organism than conventionally accepted by comparative morphologists and developmental biologists.


Subject(s)
Fishes/genetics , MicroRNAs , Vertebrates/genetics , Animals , Genome , Hagfishes/genetics , Jaw , Lampreys/genetics , Phylogeny
6.
J Infect Dis ; 200(6): 965-72, 2009 Sep 15.
Article in English | MEDLINE | ID: mdl-19671015

ABSTRACT

BACKGROUND: Mucosal surfaces of the female reproductive tract are the main routes of heterosexual transmission of human immunodeficiency virus type 1 (HIV-1), but the contribution of each of the reproductive sites to mucosal transmission is unknown. METHODS: We compared levels of HIV-1 transcription between ectocervical and endometrial tissue explants infected ex vivo with HIV-1. RESULTS: We detected higher levels of HIV-1 transcription in the ectocervix. Although CD45 expression was also increased at this site, higher levels of HIV-1 transcription could not be accounted for exclusively by differences in CD45 expression. This suggests that factors other than CD45 levels regulate HIV-1 transcription within the ectocervix. We detected higher levels of interleukin (IL)-6 at this site. Furthermore, addition of recombinant IL-6 to tissue explants enhanced HIV-1 transcription to a much greater degree in the ectocervix than in the endometrium. CONCLUSIONS: This is, to our knowledge, the first study to compare ectocervix and endometrium in a tissue explant model of HIV-1 infection and to demonstrate greater HIV-1 transcription in the ectocervix. Our results suggest that the ectocervix is more conducive to HIV-1 replication than is the endometrium and that IL-6 enhances HIV-1 transcription at this site. Thus, the ectocervix is an important site to be considered in heterosexual transmission of HIV-1.


Subject(s)
Cervix Uteri/virology , HIV Infections/virology , HIV-1 , Virus Replication/physiology , Endometrium/virology , Female , HIV-1/genetics , Humans , Interleukin-6/metabolism , Leukocyte Common Antigens/genetics , Leukocyte Common Antigens/metabolism , Tissue Culture Techniques , Transcription, Genetic
7.
Evol Dev ; 11(1): 50-68, 2009.
Article in English | MEDLINE | ID: mdl-19196333

ABSTRACT

microRNAs (miRNAs) are approximately 22-nucleotide noncoding RNA regulatory genes that are key players in cellular differentiation and homeostasis. They might also play important roles in shaping metazoan macroevolution. Previous studies have shown that miRNAs are continuously being added to metazoan genomes through time, and, once integrated into gene regulatory networks, show only rare mutations within the primary sequence of the mature gene product and are only rarely secondarily lost. However, because the conclusions from these studies were largely based on phylogenetic conservation of miRNAs between model systems like Drosophila and the taxon of interest, it was unclear if these trends would describe most miRNAs in most metazoan taxa. Here, we describe the shared complement of miRNAs among 18 animal species using a combination of 454 sequencing of small RNA libraries with genomic searches. We show that the evolutionary trends elucidated from the model systems are generally true for all miRNA families and metazoan taxa explored: the continuous addition of miRNA families with only rare substitutions to the mature sequence, and only rare instances of secondary loss. Despite this conservation, we document evolutionary stable shifts to the determination of position 1 of the mature sequence, a phenomenon we call seed shifting, as well as the ability to post-transcriptionally edit the 5' end of the mature read, changing the identity of the seed sequence and possibly the repertoire of downstream targets. Finally, we describe a novel type of miRNA in demosponges that, although shows a different pre-miRNA structure, still shows remarkable conservation of the mature sequence in the two sponge species analyzed. We propose that miRNAs might be excellent phylogenetic markers, and suggest that the advent of morphological complexity might have its roots in miRNA innovation.


Subject(s)
Chordata/genetics , Evolution, Molecular , Invertebrates/genetics , MicroRNAs/genetics , Phylogeny , Animals , Base Sequence , Blotting, Northern , Computational Biology , Conserved Sequence/genetics , DNA Primers/genetics , Gene Library , Molecular Sequence Data , Porifera/genetics , Sequence Analysis, DNA , Species Specificity
8.
AIDS Res Hum Retroviruses ; 24(5): 701-16, 2008 May.
Article in English | MEDLINE | ID: mdl-18462082

ABSTRACT

Endogenous levels of estradiol and progesterone fluctuate in the peripheral blood of premenopausal women during the reproductive cycle. We studied the effects of these sex hormones on HIV-1 replication in peripheral blood mononuclear cells (PBMCs). We compared HIV-1 replication in PBMCs infected in the presence of mid-secretory (high concentrations) and mid-proliferative (low concentrations) or in the absence of sex hormones. With PBMCs from men, we used concentrations of estradiol and progesterone that are normally present in their plasma. Our findings demonstrate that mid-proliferative phase conditions increased, and mid-secretory phase conditions decreased, HIV-1 replication. To determine if sex hormones affect specific stages of the viral life cycle we performed real-time PCR assays and found decreased levels of HIV-1 integration in the mid-secretory phase and increased levels viral transcription in the mid-proliferative phase. No significant effects on HIV-1 reverse transcription or on CCR5 expression were found. In addition, we assessed hormonal regulation of the HIV-1 LTR in the absence of the viral regulatory protein Tat. We observed that mid-proliferative hormone levels enhanced, whereas mid-secretory hormone concentrations reduced, the activity of the LTR. These findings demonstrate that in HIV-1-infected cells, estradiol and progesterone regulate HIV-1 replication most likely by directly altering HIV-1 transcriptional activation. An additional indirect mechanism of sex hormone regulation of cytokine and chemokine secretion cannot be excluded.


Subject(s)
Estradiol/pharmacology , HIV Infections/virology , HIV-1/physiology , Progesterone/pharmacology , Cells, Cultured , Female , Gene Expression Regulation, Viral , HIV Long Terminal Repeat/drug effects , HIV Long Terminal Repeat/physiology , Humans , Leukocytes, Mononuclear , Male , Transcription, Genetic/genetics , Virus Replication/drug effects
9.
Proc Natl Acad Sci U S A ; 105(8): 2946-50, 2008 Feb 26.
Article in English | MEDLINE | ID: mdl-18287013

ABSTRACT

The causal basis of vertebrate complexity has been sought in genome duplication events (GDEs) that occurred during the emergence of vertebrates, but evidence beyond coincidence is wanting. MicroRNAs (miRNAs) have recently been identified as a viable causal factor in increasing organismal complexity through the action of these approximately 22-nt noncoding RNAs in regulating gene expression. Because miRNAs are continuously being added to animalian genomes, and, once integrated into a gene regulatory network, are strongly conserved in primary sequence and rarely secondarily lost, their evolutionary history can be accurately reconstructed. Here, using a combination of Northern analyses and genomic searches, we show that 41 miRNA families evolved at the base of Vertebrata, as they are found and/or detected in lamprey, but not in either ascidians or amphioxus (or any other nonchordate taxon). When placed into temporal context, the rate of miRNA acquisition and the extent of phenotypic evolution are anomalously high early in vertebrate history, far outstripping any other episode in chordate evolution. The genomic position of miRNA paralogues in humans, together with gene trees incorporating lamprey orthologues, indicates that although GDEs can account for an increase in the diversity of miRNA family members, which occurred before the last common ancestor of all living vertebrates, GDEs cannot account for the origin of these novel families themselves. We hypothesize that lying behind the origin of vertebrate complexity is the dramatic expansion of the noncoding RNA inventory including miRNAs, rather than an increase in the protein-encoding inventory caused by GDEs.


Subject(s)
Evolution, Molecular , Gene Expression Regulation/genetics , MicroRNAs/genetics , Phenotype , Phylogeny , Vertebrates/anatomy & histology , Vertebrates/genetics , Animals , Base Sequence , Blotting, Northern , Cluster Analysis , Computational Biology , Models, Genetic , Molecular Sequence Data , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...