Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 31(50): 505714, 2020 Dec 11.
Article in English | MEDLINE | ID: mdl-32927451

ABSTRACT

Hybrid systems consisting of colloidal CdS/ZnS core/shell quantum dots on ZnSe semiconductor substrates have been studied by continuous-wave and nanosecond time-resolved photoluminescence. On the basis of kinetic calculations, we studied the interplay between the possible transfer processes in these hybrids. The considered transfer mechanisms were resonance energy transfer, photon reabsorption, electron and hole tunneling. Depending on the size of the CdS cores the dominating transfer mechanism is changing. Carrier tunneling was found only for quantum dots in direct contact to the substrate. For large quantum dots a hole tunneling was found, whereas in case of small dots the fast electron tunneling is decisive. Eventually, we were able to determine the conduction band offset between CdS and ZnSe to 0.56 eV at 10 K.

2.
Nanotechnology ; 28(2): 025701, 2017 Jan 13.
Article in English | MEDLINE | ID: mdl-27905316

ABSTRACT

(Ga,In)As/GaAs/Ga(As,Sb) multi-quantum well heterostructures have been investigated using continuous wave and time-resolved photoluminescence spectroscopy at various temperatures. A complex interplay was observed between the excitonic type-II transitions with electrons in the (Ga,In)As well and holes in the Ga(As,Sb) well and the type-I excitons in the (Ga,In)As and Ga(As,Sb) wells. The type-II luminescence exhibits a strongly non-exponential temporal behavior below a critical temperature of T c = 70 K. The transients were analyzed in the framework of a rate-equation model. It was found that the exciton relaxation and hopping in the localized states of the disordered ternary Ga(As,Sb) are the decisive processes to describe the dynamics of the type-II excitons correctly.

3.
J Phys Condens Matter ; 24(44): 445012, 2012 Nov 07.
Article in English | MEDLINE | ID: mdl-23053024

ABSTRACT

Pentacene films have been grown on two polar zinc oxide surfaces, i.e., ZnO(0001) and ZnO(0001(-)), as well as on the mixed-terminated ZnO(101(-)0) and are characterized by means of atomic force microscopy (AFM), x-ray diffraction (XRD), and thermal desorption spectroscopy (TDS). In all cases, pentacene aggregates in an upright orientation without any evidence for the formation of an interface stabilized wetting layer. Additional films deposited on a highly-defective, oxygen-depleted ZnO(0001(-)) reveal no altered growth mode. Nearly identical optical absorption spectra have been measured for all films, thus corroborating a weak molecule-substrate interaction. Upon cooling, however, a slightly different relaxation behavior could be resolved for pentacene films on polar ZnO surfaces compared to pentacene on the mixed-terminated ZnO(101(-)0) surface.

4.
Phys Rev Lett ; 102(4): 046404, 2009 Jan 30.
Article in English | MEDLINE | ID: mdl-19257448

ABSTRACT

InSb:Mn and InSb:Ge reveal differences in their resistivity near the metal-insulator transition although both are acceptors of comparable depth. InSb:Ge shows the commonly observed behavior whereas InSb:Mn exhibits a strong enhancement of the resistivity below 10 K and pronounced negative magnetoresistance effects at 1.6 K. Both effects increase by applying hydrostatic pressure. The different behavior arises from the differences in the filling of the 3d shell, half filled 3d;{5} for Mn with a total spin of S=5/2 and entirely filled 3d;{10} for Ge with total angular momentum of J=0. The exchange interaction between the hole spin of the Mn acceptor and the S=5/2 spin of its 3d;{5} shell is the dominant correlation effect leading to the formation of an antiferromagnetic alignment of the Mn 3d;{5} spins along the percolation path which inhibits hopping of holes between neighboring Mn sites.

5.
J Phys Condens Matter ; 18(26): 6071-83, 2006 Jul 05.
Article in English | MEDLINE | ID: mdl-21690820

ABSTRACT

We report a systematic study of ferromagnetic resonance in granular GaAs:Mn/MnAs hybrids grown on GaAs(001) substrates by metal-organic vapour-phase epitaxy. The ferromagnetic resonance of the MnAs clusters can be resolved at all temperatures below T(c). An additional broad absorption is observed below 60 K and is ascribed to localized charge carriers of the GaAs:Mn matrix. The anisotropy of the MnAs ferromagnetic resonance field originates from the magneto-crystalline field and demagnetization effects of the ferromagnetic MnAs clusters embedded in the GaAs:Mn matrix. Its temperature dependence basically scales with magnetization. Comparison of the observed angular dependence of the resonance field with model calculations yields the preferential orientation and shape of the clusters formed in hybrid layers of different thickness (150-1000 nm) grown otherwise at the same growth conditions. The hexagonal axes of the MnAs clusters are oriented along the four cubic GaAs space diagonals. Thin layers contain lens-shaped MnAs clusters close to the surface, whereas thick layers also contain spherical clusters in the bulk of the layer. The magnetic properties of the hexagonal MnAs clusters can be tuned by a controlled variation of the cluster shape.

SELECTION OF CITATIONS
SEARCH DETAIL
...