Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Biol ; 223(Pt 10)2020 05 18.
Article in English | MEDLINE | ID: mdl-32179547

ABSTRACT

Using tethered American cockroaches walking on a trackball in a spherical virtual reality environment, we tested optomotor responses to horizontally moving black-and-white gratings of different vertical extent under six different light intensities. We found that shortening the vertical extent of the wide-field stimulus grating within a light level weakened response strength, reduced average velocity and decreased angular walking distance. Optomotor responses with the vertically shortened stimuli persisted down to light intensity levels of 0.05 lx. Response latency seems to be independent of both the height of the stimulus and light intensity. The optomotor response started saturating at a light intensity of 5 lx, where the shortest behaviourally significant stimulus was 1 deg. This indicates that the number of vertical ommatidial rows needed to elicit an optomotor response at 5 lx and above is in the single digits, maybe even just one. Our behavioural results encourage further inquiry into the interplay of light intensity and stimulus size in insect dim-light vision.


Subject(s)
Cockroaches , Virtual Reality , Animals , Motor Activity
2.
J Exp Biol ; 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-34005539

ABSTRACT

Using tethered American cockroaches walking on a trackball in a spherical virtual reality environment, we tested optomotor responses to horizontally moving black-and-white gratings of different vertical extent under six different light intensities. We found that shortening the vertical extent of the wide-field stimulus grating within a light level weakened response strength, reduced average velocity, and decreased angular walking distance. Optomotor responses with the vertically shortened stimuli persisted down to light intensity levels of 0.05 lx. Response latency seems to be independent of both the height of the stimulus and light intensity. The optomotor response started saturating at the light intensity of 5 lx, where the shortest behaviourally significant stimulus was 1°. This indicates that the number of vertical ommatidial rows needed to elicit an optomotor response at 5 lx and above is in the single digits, maybe even just one. Our behavioural results encourage further inquiry into the interplay of light intensity and stimulus size in insect dim-light vision.

3.
Article in English | MEDLINE | ID: mdl-30238156

ABSTRACT

Absence of screening pigment in insect compound eyes has been linked to visual dysfunction. We investigated how its loss in a white-eyed mutant (W-E) alters the photoreceptor electrophysiological properties, opsin gene expression, and the behavior of the cockroach, Periplaneta americana. Whole-cell patch-clamp recordings of green-sensitive photoreceptors in W-E cockroaches gave reduced membrane capacitance, absolute sensitivity to light, and light-induced currents. Decreased low-pass filtering increased voltage-bump amplitudes in W-E photoreceptors. Intracellular recordings showed that angular sensitivity of W-E photoreceptors had two distinct components: a large narrow component with the same acceptance angle as wild type, plus a relatively small wide component. Information processing was evaluated using Gaussian white-noise modulated light stimulation. In bright light, W-E photoreceptors demonstrated higher signal gain and signal power than wild-type photoreceptors. Expression levels of the primary UV- and green-sensitive opsins were lower and the secondary green-sensitive opsin significantly higher in W-E than in wild-type retinae. In behavioral experiments, W-E cockroaches were significantly less active in dim green light, consistent with the relatively low light sensitivity of their photoreceptors. Overall, these differences can be related to the loss of screening pigment function and to a compensatory decrease in the rhabdomere size in W-E retinae.


Subject(s)
Compound Eye, Arthropod/physiology , Periplaneta/physiology , Photoreceptor Cells, Invertebrate/physiology , Vision, Ocular/physiology , Animals , Behavior, Animal/physiology , Electric Capacitance , Gene Expression , Insect Proteins/metabolism , Intracellular Space/physiology , Male , Membrane Potentials/physiology , Motor Activity , Opsins/metabolism , Patch-Clamp Techniques , Photic Stimulation , Pigmentation , Potassium/metabolism , RNA, Messenger/metabolism , Signal Transduction/physiology
4.
J Exp Biol ; 221(Pt 21)2018 11 01.
Article in English | MEDLINE | ID: mdl-30224371

ABSTRACT

The compound eye of Periplaneta americana contains two spectral classes of photoreceptors: narrow-band UV-sensitive and broad-band green-sensitive. In intracellular recordings, stimulation of green-sensitive photoreceptors with flashes of relatively bright UV/violet light produced anomalous delayed depolarization after the end of the normal light response, whereas stimulation of UV-sensitive photoreceptors with green light elicited biphasic responses characterized by initial transient hyperpolarization followed by prolonged delayed depolarization. To explore the basis for these findings, we used RNA interference to selectively suppress expression of the genes encoding green opsin (GO1), UV opsin (UVO) or both. The hyperpolarizing component in UV-sensitive photoreceptors was eliminated and the delayed depolarization was reduced after GO1 knockdown, suggesting that the hyperpolarization represents fast inhibitory interactions between green- and UV-sensitive photoreceptors. Green-sensitive photoreceptor responses of GO1 knockdowns to flashes of UV/violet were almost exclusively biphasic, whereas residual responses to green had normal kinetics. Knockdown of UVO reduced the responses of UV-sensitive photoreceptors but had minor effects on delayed depolarization in green-sensitive photoreceptors. Angular sensitivity analysis indicated that delayed depolarization of green-sensitive photoreceptors by violet light originates from excitation of (an)other photoreceptor(s) in the same ommatidium. The angle at which the maximal delayed depolarization was observed in green-sensitive photoreceptors stimulated with violet light did not match the angle of the maximal transient depolarization. In contrast, no significant mismatch was observed for delayed depolarization elicited by green light. These results suggest that the cellular sources of the normal transient and additional delayed depolarization by violet light are separate and distinct.


Subject(s)
Light , Periplaneta/physiology , Photoreceptor Cells, Invertebrate/physiology , Animals , Genes, Insect/physiology , Insect Proteins/genetics , Insect Proteins/metabolism , Male , Membrane Potentials/physiology , Opsins/genetics , Opsins/metabolism , Photic Stimulation , RNA Interference
5.
Article in English | MEDLINE | ID: mdl-29192330

ABSTRACT

Insect ocelli are relatively simple eyes that have been assigned various functions not related to pictorial vision. In some species they function as sensors of ambient light intensity, from which information is relayed to various parts of the nervous system, e.g., for the control of circadian rhythms. In this work we have investigated the possibility that the ocellar light stimulation changes the properties of the optomotor performance of the cockroach Periplaneta americana. We used a virtual reality environment where a panoramic moving image is presented to the cockroach while its movements are recorded with a trackball. Previously we have shown that the optomotor reaction of the cockroach persists down to the intensity of moonless night sky, equivalent to less than 0.1 photons/s being absorbed by each compound eye photoreceptor. By occluding the compound eyes, the ocelli, or both, we show that the ocellar stimulation can change the intensity dependence of the optomotor reaction, indicating involvement of the ocellar visual system in the information processing of movement. We also measured the cuticular transmission, which, although relatively large, is unlikely to contribute profoundly to ocellar function, but may be significant in determining the mean activity level of completely blinded cockroaches.


Subject(s)
Cockroaches/physiology , Motor Activity , Vision, Ocular/physiology , Animals , Cockroaches/anatomy & histology , Compound Eye, Arthropod/physiology , Male , Motor Activity/physiology , Virtual Reality
6.
Philos Trans R Soc Lond B Biol Sci ; 372(1717)2017 Apr 05.
Article in English | MEDLINE | ID: mdl-28193821

ABSTRACT

Night vision is ultimately about extracting information from a noisy visual input. Several species of nocturnal insects exhibit complex visually guided behaviour in conditions where most animals are practically blind. The compound eyes of nocturnal insects produce strong responses to single photons and process them into meaningful neural signals, which are amplified by specialized neuroanatomical structures. While a lot is known about the light responses and the anatomical structures that promote pooling of responses to increase sensitivity, there is still a dearth of knowledge on the physiology of night vision. Retinal photoreceptors form the first bottleneck for the transfer of visual information. In this review, we cover the basics of what is known about physiological adaptations of insect photoreceptors for low-light vision. We will also discuss major enigmas of some of the functional properties of nocturnal photoreceptors, and describe recent advances in methodologies that may help to solve them and broaden the field of insect vision research to new model animals.This article is part of the themed issue 'Vision in dim light'.


Subject(s)
Darkness , Insecta/physiology , Photoreceptor Cells, Invertebrate , Vision, Ocular , Adaptation, Physiological , Animals
7.
J Exp Biol ; 217(Pt 23): 4262-8, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25472974

ABSTRACT

Reliable vision in dim light depends on the efficient capture of photons. Moreover, visually guided behaviour requires reliable signals from the photoreceptors to generate appropriate motor reactions. Here, we show that at behavioural low-light threshold, cockroach photoreceptors respond to moving gratings with single-photon absorption events known as 'quantum bumps' at or below the rate of 0.1 s(-1). By performing behavioural experiments and intracellular recordings from photoreceptors under identical stimulus conditions, we demonstrate that continuous modulation of the photoreceptor membrane potential is not necessary to elicit visually guided behaviour. The results indicate that in cockroach motion detection, massive temporal and spatial pooling takes place throughout the eye under dim conditions, involving currently unknown neural processing algorithms. The extremely high night-vision capability of the cockroach visual system provides a roadmap for bio-mimetic imaging design.


Subject(s)
Cockroaches/physiology , Photons , Photoreceptor Cells, Invertebrate/physiology , Animals , Dark Adaptation/physiology , Light , Male , Membrane Potentials/physiology , Motor Activity/physiology , Photic Stimulation/methods , Sensory Thresholds
8.
J Neurosci ; 26(52): 13454-62, 2006 Dec 27.
Article in English | MEDLINE | ID: mdl-17192428

ABSTRACT

The compound eyes of insects contain photoreceptors in small eyelets, ommatidia. The photoreceptors generally vary very little from ommatidium to ommatidium. However, in the large compound eyes of the cockroach (Periplaneta americana), previous studies have shown large differences in the optical structure between the ommatidia. The anatomy suggests pooling of 6-20 photoreceptor signals into one second-order cell in the first synapse. Here, we show and characterize an unexpectedly large and seemingly random functional variability in the cockroach photoreceptors in terms of sensitivity, adaptation speed, angular sensitivity, and signal-to-noise ratio. We also investigate the implications of action potentials, triggered by the light-induced membrane depolarization in the photoreceptor axons. The combination of the functional features reported here is unique among the compound eyes. Recordings from the proximal parts of the thin and long photoreceptor axons or small and distant second-order neurons are not practical with the present methods. To alleviate this lack of data, we used computer simulations mimicking the functional variability, spike coding, and pooling of 12 photoreceptor signals, on the basis of our recordings from the photoreceptor somata and distal axons. The predicted responses of a simulated second-order cell follow surprisingly reliably the simulated light stimuli when compared with a simulation of functionally identical photoreceptors. We hypothesize that cockroach photoreceptors use action potential coding and a kind of population coding scheme for making sense of the inherently unreliable light signals at low luminance and for optimization of vision in its mainly dim living conditions.


Subject(s)
Periplaneta/physiology , Photic Stimulation/methods , Photoreceptor Cells, Invertebrate/physiology , Action Potentials/physiology , Animals , Female , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...