Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Neuroendocrinol ; 28(2): 12345, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26648568

ABSTRACT

Across vertebrates, aggression is robustly expressed during the breeding season when circulating testosterone is elevated, and testosterone activates aggression either directly or after aromatisation into 17ß-oestradiol (E2 ) in the brain. In some species, such as the song sparrow, aggressive behaviour is also expressed at high levels during the nonbreeding season, when circulating testosterone is non-detectable. At this time, the androgen precursor dehydroepiandrosterone (DHEA) is metabolised within the brain into testosterone and/or E2 to promote aggression. In the present study, we used captive male song sparrows to test the hypothesis that an acute agonistic interaction during the nonbreeding season, but not during the breeding season, would alter steroid levels in the brain. Nonbreeding and breeding subjects were exposed to either a laboratory simulated territorial intrusion (L-STI) or an empty cage for only 5 min. Immediately afterwards, the brain was rapidly collected and flash frozen. The Palkovits punch technique was used to microdissect specific brain regions implicated in aggressive behaviour. Solid phase extraction followed by radioimmunoassay was used to quantify DHEA, testosterone and E2 in punches. Overall, levels of DHEA, testosterone and E2 were higher in brain tissue than in plasma. Local testosterone and E2 levels in the preoptic area, anterior hypothalamus and nucleus taeniae of the amygdala were significantly higher in the breeding season than the nonbreeding season and were not affected by the L-STI. Unexpectedly, subjects that were dominant in the L-STI had lower levels of DHEA in the anterior hypothalamus and medial striatum in both seasons and lower levels of DHEA in the nucleus taeniae of the amygdala in the breeding season only. Taken together, these data suggest that local levels of DHEA in the brain are very rapidly modulated by social interactions in a context and region-specific pattern.


Subject(s)
Brain/metabolism , Dehydroepiandrosterone/metabolism , Estradiol/metabolism , Seasons , Sparrows/metabolism , Territoriality , Testosterone/metabolism , Amygdala/metabolism , Animals , Corpus Striatum/metabolism , Hypothalamus, Anterior/metabolism , Male , Preoptic Area/metabolism
2.
J Neuroendocrinol ; 23(8): 742-53, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21623961

ABSTRACT

Testosterone is critical for the activation of aggressive behaviours. In many vertebrate species, circulating testosterone levels rapidly increase after aggressive encounters during the early or mid-breeding season. During the late breeding season, circulating testosterone concentrations did not change in wild male white-crowned sparrows after an aggressive encounter and, in these animals, changes in local neural metabolism of testosterone might be more important than changes in systemic testosterone levels. Local neural aromatisation of testosterone into 17ß-oestradiol (E(2)) often mediates the actions of testosterone, and we hypothesised that, in the late breeding season, brain aromatase is rapidly modulated after aggressive interactions, leading to changes in local concentrations of E(2). In the present study, wild male white-crowned sparrows in the late breeding season were exposed to simulated territorial intrusion (STI) (song playback and live decoy) or control (CON) for 30 min. STI significantly increased aggressive behaviours. Using the Palkovits punch technique, 13 brain regions were collected. There was high aromatase activity in several nuclei, although enzymatic activity in the CON and STI groups did not differ in any region. E(2) concentrations were much higher in the brain than the plasma. STI did not affect circulating levels of E(2) but rapidly reduced E(2) concentrations in the hippocampus, ventromedial nucleus of the hypothalamus and bed nucleus of the stria terminalis. Unexpectedly, there were no correlations between aromatase activity and E(2) concentrations in the brain, nor were aromatase activity or brain E(2) correlated with aggressive behaviour or plasma hormone levels. This is one of the first studies to measure E(2) in microdissected brain regions, and the first study to do so in free-ranging animals. These data demonstrate that social interactions have rapid effects on local E(2) concentrations in specific brain regions.


Subject(s)
Aggression/physiology , Aromatase/metabolism , Brain/anatomy & histology , Brain/metabolism , Estradiol/metabolism , Sparrows/anatomy & histology , Sparrows/physiology , Animals , Brain/physiology , Male , Seasons , Sexual Behavior, Animal/physiology , Territoriality , Testosterone/blood , Vocalization, Animal
3.
Neuroscience ; 182: 133-43, 2011 May 19.
Article in English | MEDLINE | ID: mdl-21397668

ABSTRACT

In seasonally breeding male songbirds, both the function of song and the stimuli that elicit singing behavior change seasonally. The catecholamine norepinephrine (NE) modulates attention and arousal across behavioral states, yet the role of NE in seasonally-appropriate vocal communication has not been well-studied. The present study explored the possibility that seasonal changes in alpha 2-noradrenergic receptors (α(2)-R) within song control regions and brain regions implicated in sexual arousal and social behavior contribute to seasonal changes in song behavior in male European starlings (Sturnus vulgaris). We quantified singing behavior in aviary housed males under spring breeding season conditions and fall conditions. α(2)-R were identified with the selective ligand [(3)H]RX821002 using autoradiographic methods. The densities of α(2)-R in song control regions (HVC and the robust nucleus of the arcopallium [RA]) and the lateral septum (LS) were lower in Spring Condition males. α(2)-R densities in the caudal portion of the medial preoptic nucleus (POM) related negatively to singing behavior. Testosterone concentrations were highest in Spring Condition males and correlated with α(2)-R in LS and POM. Results link persistent seasonal alterations in the structure or function of male song to seasonal changes in NE α(2)-Rs in HVC, RA, and LS. Individual differences in α(2)-R in the POM may in part explain individual differences in song production irrespective of the context in which a male is singing, perhaps through NE modification of male sexual arousal.


Subject(s)
Brain/metabolism , Norepinephrine/physiology , Receptors, Adrenergic, alpha-2/physiology , Seasons , Starlings/physiology , Vocalization, Animal/physiology , Animals , Brain Mapping/methods , Female , Male , Sexual Behavior, Animal/physiology , Social Behavior
4.
Neuroscience ; 159(3): 962-73, 2009 Mar 31.
Article in English | MEDLINE | ID: mdl-19356680

ABSTRACT

Research in songbirds shows that singing behavior is regulated by both brain areas involved in vocal behavior as well as those involved in social behavior. Interestingly, the precise role of these regions in song can vary as a function of the social, environmental and breeding context. To date, little is known about the neurotransmitters underlying such context-dependent regulation of song. Dopamine (DA) modulates highly motivated, goal-directed behaviors (including sexually motivated song) and emerging data implicate DA in the context-dependent regulation of singing behavior. This study was performed to begin to examine whether differences in DA receptors may underlie, in part, context-dependent differences in song production. We used autoradiographic procedures to label D1-like and D2-like DA receptors to examine the relationship between DA receptor density and singing behavior in multiple contexts in male European starlings (Sturnus vulgaris). Within a breeding context (when testosterone (T) was high), D1-like receptor density in the medial preoptic nucleus (POM) and midbrain central gray (GCt) negatively correlated with song used to attract a female. Additionally in this context, D1-like receptor density in POM, GCt, medial bed nucleus of the stria terminalis (BSTm), and lateral septum (LS) negatively correlated with song likely used to defend a nest box. In contrast, in a non-breeding context (when T was low), D1-like receptor density in POM and LS positively correlated with song used to maintain social flocks. No relationships were identified between song in any context and D2-like receptor densities. Differences in the brain regions and directional relationships between D1-like receptor binding and song suggest that dopaminergic systems play a region and context-specific role in song. These data also suggest that individual variation in singing behavior may, in part, be explained by individual differences in D1-like receptor density in brain regions implicated in social behavior.


Subject(s)
Brain/physiology , Receptors, Dopamine D1/metabolism , Social Behavior , Starlings/physiology , Vocalization, Animal/physiology , Animals , Autoradiography , Environment , Female , Male , Periaqueductal Gray/physiology , Preoptic Area/physiology , Random Allocation , Receptors, Dopamine D2/metabolism , Septal Nuclei/physiology , Septum of Brain/physiology , Sexual Behavior, Animal/physiology , Testosterone/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...