Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
SIAM J Imaging Sci ; 14(2): 689-716, 2021.
Article in English | MEDLINE | ID: mdl-35126803

ABSTRACT

We target the problem of estimating the center of mass of objects in noisy two-dimensional images. We assume that the noise dominates the image, and thus many standard approaches are vulnerable to estimation errors, e.g., the direct computation of the center of mass and the geometric median which is a robust alternative to the center of mass. In this paper, we define a novel surrogate function to the center of mass. We present a mathematical and numerical analysis of our method and show that it outperforms existing methods for estimating the center of mass of an object in various realistic scenarios. As a case study, we apply our centering method to data from single-particle cryo-electron microscopy (cryo-EM), where the goal is to reconstruct the three-dimensional structure of macromolecules. We show how to apply our approach for a better translational alignment of molecule images picked from experimental data. In this way, we facilitate the succeeding steps of reconstruction and streamline the entire cryo-EM pipeline, saving computational time and supporting resolution enhancement.

2.
Ultramicroscopy ; 212: 112950, 2020 05.
Article in English | MEDLINE | ID: mdl-32151795

ABSTRACT

When using an electron microscope for imaging of particles embedded in vitreous ice, the recorded image, or micrograph, is a significantly degraded version of the tomographic projection of the sample. Apart from noise, the image is affected by the optical configuration of the microscope. This transformation is typically modeled as a convolution with a point spread function. The Fourier transform of this function, known as the contrast transfer function (CTF), is oscillatory, attenuating and amplifying different frequency bands, and sometimes flipping their signs. High-resolution reconstruction requires this CTF to be accounted for, but as its form depends on experimental parameters, it must first be estimated from the micrograph. We present a new method for CTF estimation based on multitaper techniques that reduce bias and variance in the estimate. We also use known properties of the CTF and the background power spectrum to further reduce the variance through background subtraction and steerable basis projection. We show that the resulting power spectrum estimates better capture the zero-crossings of the CTF and yield accurate CTF estimates on several experimental micrographs.

3.
J Struct Biol ; 204(2): 215-227, 2018 11.
Article in English | MEDLINE | ID: mdl-30134153

ABSTRACT

Particle picking is a crucial first step in the computational pipeline of single-particle cryo-electron microscopy (cryo-EM). Selecting particles from the micrographs is difficult especially for small particles with low contrast. As high-resolution reconstruction typically requires hundreds of thousands of particles, manually picking that many particles is often too time-consuming. While template-based particle picking is currently a popular approach, it may suffer from introducing manual bias into the selection process. In addition, this approach is still somewhat time-consuming. This paper presents the APPLE (Automatic Particle Picking with Low user Effort) picker, a simple and novel approach for fast, accurate, and template-free particle picking. This approach is evaluated on publicly available datasets containing micrographs of ß-galactosidase, T20S proteasome, 70S ribosome and keyhole limpet hemocyanin projections.


Subject(s)
Cryoelectron Microscopy/methods , beta-Galactosidase/chemistry , beta-Galactosidase/ultrastructure , Algorithms , Imaging, Three-Dimensional , Pattern Recognition, Automated
4.
IEEE Trans Image Process ; 25(10): 4743-4752, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27416599

ABSTRACT

This paper presents an unsupervised and semi-automatic image segmentation approach where we formulate the segmentation as an inference problem based on unary and pairwise assignment probabilities computed using low-level image cues. The inference is solved via a probabilistic graph matching scheme, which allows rigorous incorporation of low-level image cues and automatic tuning of parameters. The proposed scheme is experimentally shown to compare favorably with contemporary semi-supervised and unsupervised image segmentation schemes, when applied to contemporary state-of-the-art image sets.

SELECTION OF CITATIONS
SEARCH DETAIL
...