Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Front Immunol ; 15: 1342845, 2024.
Article in English | MEDLINE | ID: mdl-38571955

ABSTRACT

Introduction: Over the past decade, immune checkpoint inhibitors such as antibodies against cytotoxicity T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1) have become an important armamentarium against a broad spectrum of malignancies. However, these specific inhibitors can cause adverse autoimmune reactions by impairing self-tolerance. Hematologic side effects of immune checkpoint inhibitors, including autoimmune hemolytic anemia (AIHA), are rare but can be life-threatening. Case report: Herein, we report two patients on immune checkpoint inhibitors for metastatic melanoma who developed AIHA with symptoms of dyspnea and fatigue. In the first patient, symptoms alleviated after discontinuation of combined anti CTLA-4 and anti-PD-1 therapy, initiation of corticosteroids and application of a single red blood cell transfusion. Due to subsequent progress of melanoma, combinational anti-PD-1 and tyrosine kinase inhibitor therapy was initiated based on multidisciplinary tumor board decision. After two months, she again developed the described hematological and clinical signs of AIHA leading to cessation of anti-PD-1 therapy and initiation of corticosteroids, which again resulted in an alleviation of her symptoms. Due to further progression, the patient received dacarbazine for several months before she decided to stop any therapy other than palliative supportive care. In the second patient, discontinuation of anti-PD-1 therapy and initiation of corticosteroids entailed a complete alleviation of his symptoms. After refusing chemotherapy due to subsequent melanoma progression, he received radiotherapy of bone metastases and is currently enrolled in a clinical trial. The patient did not develop AIHA ever since. Conclusion: Hematologic immune-related adverse events due to treatment with immune checkpoint inhibitors are rare but can have life-threatening consequences. If dyspnea and other clinical symptoms are present, AIHA should be considered as a potential cause and treated promptly in a multidisciplinary setting. An expanded comprehension of risk factors and pathogenesis of AIHA is needed to identify high-risk patients beforehand, leading to more effective predictive and reactive treatment approaches.


Subject(s)
Anemia, Hemolytic, Autoimmune , Melanoma , Neoplasms, Second Primary , Humans , Male , Female , Melanoma/drug therapy , Melanoma/etiology , Anemia, Hemolytic, Autoimmune/chemically induced , Anemia, Hemolytic, Autoimmune/therapy , Immune Checkpoint Inhibitors/adverse effects , Immunotherapy/adverse effects , Immunotherapy/methods , Neoplasms, Second Primary/etiology , Dyspnea/etiology , Adrenal Cortex Hormones/therapeutic use
3.
Front Immunol ; 15: 1338499, 2024.
Article in English | MEDLINE | ID: mdl-38348028

ABSTRACT

Introduction: Prophylactic vaccines generate strong and durable immunity to avoid future infections, whereas post-exposure vaccinations are intended to establish rapid protection against already ongoing infections. Antiviral cytotoxic CD8+ T cells (CTL) are activated by dendritic cells (DCs), which themselves must be activated by adjuvants to express costimulatory molecules and so-called signal 0-chemokines that attract naive CTL to the DCs. Hypothesis: Here we asked whether a vaccination protocol that combines two adjuvants, a toll-like receptor ligand (TLR) and a natural killer T cell activator, to induce two signal 0 chemokines, synergistically accelerates CTL activation. Methods: We used a well-characterized vaccination model based on the model antigen ovalbumin, the TLR9 ligand CpG and the NKT cell ligand α-galactosylceramide to induce signal 0-chemokines. Exploiting this vaccination model, we studied detailed T cell kinetics and T cell profiling in different in vivo mouse models of viral infection. Results: We found that CTL induced by both adjuvants obtained a head-start that allowed them to functionally differentiate further and generate higher numbers of protective CTL 1-2 days earlier. Such signal 0-optimized post-exposure vaccination hastened clearance of experimental adenovirus and cytomegalovirus infections. Conclusion: Our findings show that signal 0 chemokine-inducing adjuvant combinations gain time in the race against rapidly replicating microbes, which may be especially useful in post-exposure vaccination settings during viral epi/pandemics.


Subject(s)
CD8-Positive T-Lymphocytes , Virus Diseases , Mice , Animals , Ligands , Chemokines , Adjuvants, Immunologic/pharmacology , Vaccination/methods
4.
Infection ; 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38017344

ABSTRACT

PURPOSE: Prolonged shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been observed in immunocompromised hosts. Early monotherapy with direct-acting antivirals or monoclonal antibodies, as recommended by the international guidelines, does not prevent this with certainty. Dual therapies may therefore have a synergistic effect. METHODS: This retrospective, multicentre study compared treatment strategies for corona virus disease-19 (COVID-19) with combinations of nirmatrelvir/ritonavir, remdesivir, molnupiravir, and/ or mABs during the Omicron surge. Co-primary endpoints were prolonged viral shedding (≥ 106 copies/ml at day 21 after treatment initiation) and days with SARS-CoV-2 viral load ≥ 106 copies/ml. Therapeutic strategies and risk groups were compared using odds ratios and Fisher's tests or Kaplan-Meier analysis and long-rank tests. Multivariable regression analysis was performed. RESULTS: 144 patients were included with a median duration of SARS-CoV-2 viral load ≥ 106 copies/ml of 8.0 days (IQR 6.0-15.3). Underlying haematological malignancies (HM) (p = 0.03) and treatment initiation later than five days after diagnosis (p < 0.01) were significantly associated with longer viral shedding. Prolonged viral shedding was observed in 14.6% (n = 21/144), particularly in patients with underlying HM (OR 3.5; 95% CI 1.2-9.9; p = 0.02). Clinical courses of COVID-19 were mild to moderate with only few adverse effects potentially related to combination treatment. CONCLUSION: Early combination treatment of COVID-19 effectively prevented prolonged viral shedding in 85.6% of cases. Considering the rapid viral clearance rates and low toxicity, individualized dual therapy approaches may be beneficial in high-risk patients.

5.
Front Immunol ; 14: 1257017, 2023.
Article in English | MEDLINE | ID: mdl-37822928

ABSTRACT

Introduction: Several anaplastic lymphoma kinase (ALK)-inhibitors (ALKi) have been approved for the treatment of ALK-translocated advanced or metastatic Non Small Cell Lung Cancer (NSCLC), amongst crizotinib and alectinib. This forces physicians to choose the most suitable compound for each individual patient on the basis of the tumor´s genetic profile, but also in regard to toxicities and potential co-treatments. Moreover, targeted therapies might be combined with or followed by immunotherapy, which underlines the importance to gain detailed knowledge about potential immunomodulatory effects of these inhibitors. We here aimed to 1.) determine whether ALKi display an immunosuppressive effect on human dendritic cells (DCs) as important mediators of antigen-specific immunity and to 2.) dissect whether this immunosuppression differs among ALKi. Methods: We investigated the effect of alectinib and crizotinib on human monocyte-derived DCs (moDC) as most powerful antigen-presenting cells. We performed immunophenotyping by flow cytometry, migration, antigen uptake and cytokine assays. Results: Crizotinib-treated DCs showed reduced activation markers, such as CD83, decreased chemokine-guided migration, lower antigen uptake and produced inferior levels of pro-inflammatory cytokines, especially Interleukin-12. In contrast, the immunosuppressive potential of alectinib was significantly less pronounced. This indicates that crizotinib might profoundly dampen anti-tumor immunity, while alectinib had no unfavourable immunosuppressive effects. Conclusions: Our results implicate that current ALKi differ in their capacity to suppress the activation, migration and cytokine production of DCs as essential mediators of T cell immunity. We show that crizotinib, but not alectinib, had immunosuppressive effects on DCs phenotype and reduced DC function, thereby potentially impairing anti-tumor immunity.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Crizotinib , Anaplastic Lymphoma Kinase , Lung Neoplasms/pathology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/therapeutic use , Cytokines
6.
Cancers (Basel) ; 15(17)2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37686498

ABSTRACT

Modern irradiation techniques for optimized conformal TBI can be realized by Helical Tomotherapy (HT) or Volumetric Modulated Arc Therapy (VMAT), depending on the availability of suitable specialized equipment. In this dosimetric planning study, we compared both modalities and addressed the question of whether VMAT with small field sizes is also suitable as a backup in case of HT equipment malfunctions. For this purpose, we retrospectively used planning computed tomography (CT) data from 10 patients treated with HT with a total dose of 8 Gy (n = 5) or 12 Gy (n = 5) for treatment planning for VMAT with a small field size (36 × 22 cm). The target volume coverage, dose homogeneity at target volume, and dose reduction in organs at risk (OAR) (lungs, kidneys, lenses) were analyzed and compared. One patient was irradiated with both modalities due to a device failure of the HT equipment during the study, which facilitated a comparison in a real clinical setting. The findings indicate that in addition to a higher mean dose to the lenses in the 12 Gy group for VMAT and a better dose homogeneity in the target volume for HT, comparably good and adequate target dose coverage and dose reduction in the other OAR could be achieved for both modalities, with significantly longer treatment times for VMAT. In conclusion, after appropriate optimization of the treatment times, VMAT using linear accelerator radiosurgery technology can be used both as a backup in addition to HT and in clinical routines to perform optimized conformal TBI.

7.
J Cancer Res Clin Oncol ; 149(10): 7007-7015, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36856852

ABSTRACT

BACKGROUND: Intensity-modulated helical tomotherapy (HT) is a promising technique in preparation for bone marrow transplantation. Nevertheless, radiation-sensitive organs can be substantially compromised due to suboptimal delivery techniques of total body irradiation (TBI). To reduce the potential burden of radiation toxicity to organs at risk (OAR), high-quality coverage and homogeneity are essential. We investigated dosimetric data from kidney, lung and thorax, liver, and spleen in relation to peripheral blood kinetics. To further advance intensity-modulated total body irradiation (TBI), the potential for dose reduction to lung and kidney was considered in the analysis. PATIENTS AND METHODS: 46 patients undergoing TBI were included in this analysis, partially divided into dose groups (2, 4, 8, and 12 Gy). HT was performed using a rotating gantry to ensuring optimal reduction of radiation to the lungs and kidneys and to provide optimal coverage of other OAR. Common dosimetric parameters, such as D05, D95, and D50, were calculated and analysed. Leukocytes, neutrophils, platelets, creatinine, GFR, haemoglobin, overall survival, and graft-versus-host disease were related to the dosimetric evaluation using statistical tests. RESULTS: The mean D95 of the lung is 48.23%, less than half the prescribed and unreduced dose. The D95 of the chest is almost twice as high at 84.95%. Overall liver coverage values ranged from 96.79% for D95 to 107% for D05. The average dose sparing of all patients analysed resulted in an average D95 of 68.64% in the right kidney and 69.31% in the left kidney. Average D95 in the spleen was 94.28% and D05 was 107.05%. Homogeneity indexes ranged from 1.12 for liver to 2.28 for lung. The additional significance analyses conducted on these blood kinetics showed a significant difference between the 2 Gray group and the other three groups for leukocyte counts. Further statistical comparisons of the dose groups showed no significant differences. However, there were significant changes in the dose of OAR prescribed with dose sparing (e.g., lung vs. rib and kidney). CONCLUSION: Using intensity-modulated helical tomotherapy to deliver TBI is a feasible method in preparation for haematopoietic stem cell transplantation. Significant dose sparing in radiosensitive organs such as the lungs and kidneys is achievable with good overall quality of coverage. Peripheral blood kinetics support the positive impact of HT and its advantages strongly encourage its implementation within clinical routine.


Subject(s)
Hematopoietic Stem Cell Transplantation , Radiotherapy, Intensity-Modulated , Humans , Radiotherapy, Intensity-Modulated/adverse effects , Radiotherapy, Intensity-Modulated/methods , Whole-Body Irradiation/methods , Organs at Risk/radiation effects , Kinetics , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods
8.
J Cancer Res Clin Oncol ; 149(9): 5965-5973, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36607428

ABSTRACT

BACKGROUND: Total body irradiation (TBI) is often a component of the conditioning regimen prior to hematopoietic stem cell transplantation in patients with hematological malignancies. However, total marrow irradiation (TMI) could be an alternative method for reducing radiation therapy-associated toxicity, as it specifically targets the skeleton and thus could better protect organs at risk. Here, we compared dosimetric changes in irradiation received by the target volume and organs at risk between TBI and TMI plans. MATERIALS AND METHODS: Theoretical TMI plans were calculated for 35 patients with various hematological malignancies who had already received TBI in our clinic. We then statistically compared irradiation doses between the new TMI plans and existing TBI plans. We examined whether TMI provides greater protection of organs at risk while maintaining the prescribed dose in the targeted skeletal area. We also compared beam-on times between TBI and TMI. RESULTS: TMI planning achieved significant reductions in the mean, minimum, and maximum irradiation doses in the lungs, kidneys, liver, spleen, and body (i.e., remaining tissue except organs and skeleton). In particular, the mean dose was reduced by 49% in the liver and spleen and by 55-59% in the kidneys. Moreover, TMI planning reduced the corpus beam-on time by an average of 217 s. CONCLUSION: TMI planning achieved significant dose reduction in organs at risk while still achieving the prescribed dose in the target volume. Additionally, TMI planning reduced the beam-on time for corpus plans despite a high modulation factor.


Subject(s)
Hematologic Neoplasms , Radiation Injuries , Radiotherapy, Intensity-Modulated , Humans , Whole-Body Irradiation/methods , Bone Marrow , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Carmustine , Etoposide
9.
Front Immunol ; 13: 1054161, 2022.
Article in English | MEDLINE | ID: mdl-36518753

ABSTRACT

Background: The use of immunotherapy (IT) is rapidly increasing across different tumor entities. PD-L1 expression is primarily used for therapy evaluation. The disadvantages of PD-L1 status are spatial and temporal heterogeneity as well as tumor type-dependent variation of predictive value. To optimize patient selection for IT, new prediction markers for therapy success are needed. Based on the systemic efficacy of IT, we dissected the immune signature of peripheral blood as an easily accessible predictive biomarker for therapeutic success. Methods: We conducted a retrospective clinical study of 62 cancer patients treated with IT. We assessed peripheral immune cell counts before the start of IT via flow cytometry. The predictive value for therapy response of developed immune signature scores was tested by ROC curve analyses and scores were correlated with time to progression (TTP). Results: High score values of "Tregs ÷ (CD4+/CD8+ ratio)" (Score A) and high score values of "Tregs × HLA-DR+CD4+ T cells × PD1+CD8+ T cells" (Score B) significantly correlated with response at first staging (p = 0.001; p < 0.001). At the optimal cutoff point, Score A correctly predicted 79.1% and Score B correctly predicted 89.3% of the staging results (sensitivity: 86.2%, 90.0%; specificity: 64.3%, 87.5%). A high Score A and Score B statistically correlated with prolonged median TTP (6.13 vs. 2.17 months, p = 0.025; 6.43 vs. 1.83 months, p = 0.016). Cox regression analyses for TTP showed a risk reduction of 55.7% (HR = 0.44, p = 0.029) for Score A and an adjusted risk reduction of 73.2% (HR = 0.27, p = 0.016) for Score B. Conclusion: The two identified immune signature scores showed high predictive value for therapy response as well as for prolonged TTP in a pan-cancer patient population. Our scores are easy to determine by using peripheral blood and flow cytometry, apply to different cancer entities, and allow an outcome prediction before the start of IT.


Subject(s)
B7-H1 Antigen , Neoplasms , Humans , B7-H1 Antigen/metabolism , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , HLA-DR Antigens , Immunotherapy/methods , Neoplasms/therapy , Retrospective Studies
10.
Front Immunol ; 13: 976011, 2022.
Article in English | MEDLINE | ID: mdl-36159812

ABSTRACT

Red blood cell (RBC) transfusions have been shown to exert immunosuppressive effects in different diseases. In consequence, RBC transfusions might also negatively influence the response to immunotherapeutic treatment approaches. To address how RBC transfusions impact response rates of antitumor immunotherapy (IT), we conducted a retrolective clinical study of patients with different solid tumors treated with IT (atezolizumab, pembrolizumab, nivolumab and/or ipilimumab). We assessed the number of RBC concentrates received within 30 days before and 60 days after the start of IT. Primary objective was the initial therapy response at first staging, secondary objectives the number of immune related adverse events and infections. 15 of 55 included patients (27.3%) received RBC concentrates. The response rates were 77.5% in the non-transfused (n=40) versus 46.7% in the transfused patient group (n=15) and reached statistical significance (p=0.047). The correlation between therapy response and transfusion was statistically significant (p=0.026) after adjustment for the only identified confounder "line of therapy". In contrast, transfusion in the interval 30 days before IT showed no significant difference for treatment response (p=0.705). Moreover, no correlation was detected between RBC transfusion and irAE rate (p=0.149) or infection rate (p=0.135). In conclusion, we show for the first time that the administration of RBC transfusions during, but not before initiation of IT treatment, negatively influences the response rates to IT. Our findings suggest a restrictive transfusion management in patients undergoing IT to receive optimal response rates.


Subject(s)
Erythrocyte Transfusion , Neoplasms , Erythrocyte Transfusion/adverse effects , Humans , Immunotherapy/adverse effects , Ipilimumab , Neoplasms/etiology , Neoplasms/therapy , Nivolumab
11.
Front Neurol ; 13: 884231, 2022.
Article in English | MEDLINE | ID: mdl-35645986

ABSTRACT

Objective: Recent studies have demonstrated emerging evidence of the role of inflammation in the growth and recurrence of chronic subdural hematoma (cSDH). Red blood cell distribution width to platelet count ratio (RPR) is a novel biomarker for inflammation in cancer, cardiac, and inflammatory diseases. The present retrospective study investigated the impact of RPR on recurrence after burr hole surgery for cSDH in 297 patients. Methods: The optimal cut-off value for RPR was defined as ≥0.0568 according to the receiver operating characteristic curve (AUC:0.64, 95%CI:0.55-0.72, p = 0.007). The study cohort was dichotomized into low (n = 157) and high (n = 140) RPR groups. Results: Significant differences between the groups were identified regarding American Society of Anesthesiologists (ASA) classification and frequency of anticoagulant intake. Demographics, comorbidities, size, morphology, and mass effect of cSDH were homogeneously distributed among the RPR groups. Multivariable binary logistic regression analysis considering location, midline-shift, septation, RPR, anticoagulant intake, sex, and ASA classification revealed that an increased baseline RPR (≥0.0568, OR: 3.1, 95%CI: 1.4-6.8, p = 0.004), and preoperative midline-shift (≥5 mm, OR: 2.7, 95%CI: 1.3-6.0, p = 0.01) are independent predictors of recurrent cSDH. Conclusion: The present findings suggest RPR as a novel inflammatory biomarker enabling risk stratification of recurrence after burr hole surgery for cSDH and might facilitate tailored medical decision making.

12.
J Cancer Res Clin Oncol ; 148(10): 2929-2932, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35732965

ABSTRACT

Infection of lymphocytes with the Epstein-Barr virus (EBV) is a well-documented risk factor for developing lymphoma. The incidence of EBV positivity in lymphoma depends on the subtype and can range from 10% in diffuse large B-cell lymphoma (DLBCL) to 100% in endemic Burkitt lymphoma (BL), (Shannon-Lowe and Rickinson, Front Oncol 9:713, 2019). However, in most cases, EBV infection remains unnoticed until diagnosis of lymphoma is made. EBV seropositivity is present in > 90% of the world's population. Although mostly asymptomatic, in some cases, EBV can cause clinical symptoms, the most common of which are fever, lymphadenopathy and pharyngitis in infectious mononucleosis. Less common presentations include lymphomatoid granulomatosis and mucocutaneous ulcer. Here we report two cases of patients, who were initially diagnosed with localized EBV infection and reactive B-cell proliferation. After B-cell-directed treatment, both patients developed overt lymphoma, in one case classical Hodgkin's lymphoma (cHL) and in the other case angioimmunoblastic T-cell lymphoma (AITL).


Subject(s)
Epstein-Barr Virus Infections , Hodgkin Disease , Lymphoma, Large B-Cell, Diffuse , Epstein-Barr Virus Infections/complications , Herpesvirus 4, Human , Humans , Incidence , Lymphoma, Large B-Cell, Diffuse/diagnosis , Lymphoma, Large B-Cell, Diffuse/pathology
14.
J Immunother Cancer ; 10(3)2022 03.
Article in English | MEDLINE | ID: mdl-35292517

ABSTRACT

Biomarkers for predicting response to anti-programmed death-1 (PD-1) immune checkpoint blockade (ICB) in non-small cell lung cancer (NSCLC) remain in demand. Since anti-tumor immune activation is a process, early dynamic changes of the acute-phase reactant C reactive protein (CRP) may serve as a predictive on-treatment biomarker. In a retrospective (N=105) and prospective (N=108) ICB-treated NSCLC cohort, early CRP kinetics were stratified after the start of immunotherapy until weeks 4, 6, and 12 as follows: an early doubling of baseline CRP followed by a drop below baseline (CRP flare-responder), a drop of at least 30% below baseline without prior flare (CRP responders), or those who remained as CRP non-responders. In our study, we observed characteristic longitudinal changes of serum CRP concentration after the initiation of ICB. In the prospective cohort, N=40 patients were defined as CRP non-responders, N=39 as CRP responders, and N=29 as CRP flare-responders with a median progression-free survival (PFS) of 2.4, 8.1, and 14.3 months, respectively, and overall survival (OS) of 6.6, 18.6, and 32.9 months (both log-rank p<0.001). Of note, CRP flare-responses, characterized by a sharp on-treatment CRP increase in the first weeks after therapy initiation, followed by a decrease of CRP serum level below baseline, predict ICB response as early as 4 weeks after therapy initiation. Of note, early CRP kinetics showed no predictive value for chemoimmunotherapy or when steroids were administered concurrently. On-treatment CRP kinetics had a predictive value for both major histological NSCLC subtypes, adenocarcinoma and squamous cell carcinoma. The results were verified in an independent retrospective cohort of 105 patients. In conclusion, CRP flare predicted anti-PD-1 monotherapy response and survival in two independent cohorts including a total of 213 patients with NSCLC, regardless of histology. Due to its wide clinical availability, early CRP kinetics could become an easily determined, cost-efficient, and non-invasive biomarker to predict response to checkpoint inhibitors in NSCLC within the first month.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Biomarkers, Tumor , C-Reactive Protein , Carcinoma, Non-Small-Cell Lung/pathology , Humans , Lung Neoplasms/pathology , Prospective Studies , Retrospective Studies
16.
J Cancer Res Clin Oncol ; 148(3): 743-748, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34529129

ABSTRACT

Blastic plasmacytoid dendritic-cell neoplasm (BPDCN) is an extremely rare disease that originates from dendritic cells and is associated with a poor overall survival (OS). Diagnostic and therapeutic standards are less well-established in comparison to other leukemic conditions and standards of care are lacking. Morphologic and molecular similarities to acute myeloid leukemia (AML), myelodysplastic syndrome (MDS) and chronic myelomonocytic leukemia (CMML) are hard to distinguish. We here report a BPDCN patient with a long, challenging diagnostic period. While bone marrow biopsies initially failed to prove the correct diagnosis, a cutaneous biopsy finally identified a CD45+/CD56+/CD4+/CD123+/CD33+/MPO- population suggestive of BPDCN which was confirmed by flow cytometry. Molecular analysis revealed an ASXL-1, TET2 and SRSF2-mutation, cytogenetic analysis showed a normal karyotype. Treatment with the recently approved CD123-cytotoxin Tagraxofusp showed initially a very good response. This case reflects diagnostic and therapeutic difficulties in BPDCN as very rare, easily misdiagnosed neoplasia and the need for precise diagnostic care.


Subject(s)
Biomarkers, Tumor/genetics , Blast Crisis/pathology , Dendritic Cells/pathology , Diagnostic Errors/prevention & control , Hematologic Neoplasms/diagnosis , Mutation , Skin Neoplasms/diagnosis , Aged , Antigens, CD/metabolism , Blast Crisis/drug therapy , Blast Crisis/genetics , Blast Crisis/metabolism , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Diagnosis, Differential , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/genetics , Hematologic Neoplasms/metabolism , Humans , Male , Prognosis , Recombinant Fusion Proteins/therapeutic use , Skin Neoplasms/drug therapy , Skin Neoplasms/genetics , Skin Neoplasms/metabolism
17.
Int J Mol Sci ; 22(22)2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34830478

ABSTRACT

DNA molecules can adopt a variety of alternative structures. Among these structures are G-quadruplex DNA structures (G4s), which support cellular function by affecting transcription, translation, and telomere maintenance. These structures can also induce genome instability by stalling replication, increasing DNA damage, and recombination events. G-quadruplex-driven genome instability is connected to tumorigenesis and other genetic disorders. In recent years, the connection between genome stability, DNA repair and G4 formation was further underlined by the identification of multiple DNA repair proteins and ligands which bind and stabilize said G4 structures to block specific DNA repair pathways. The relevance of G4s for different DNA repair pathways is complex and depends on the repair pathway itself. G4 structures can induce DNA damage and block efficient DNA repair, but they can also support the activity and function of certain repair pathways. In this review, we highlight the roles and consequences of G4 DNA structures for DNA repair initiation, processing, and the efficiency of various DNA repair pathways.


Subject(s)
DNA Repair/genetics , DNA/genetics , G-Quadruplexes , Genomic Instability/genetics , DNA Damage/genetics , DNA Helicases/genetics , Humans , Ligands
18.
Radiology ; 301(3): 602-609, 2021 12.
Article in English | MEDLINE | ID: mdl-34581628

ABSTRACT

Background Immune checkpoint inhibitors (ICIs) for cancer treatment are associated with a spectrum of immune-related adverse events, including ICI-induced myocarditis; however, the extent of subclinical acute cardiac effects related to ICI treatment is unclear. Purpose To explore the extent of cardiac injury and inflammation related to ICI therapy that can be detected with use of cardiac MRI. Materials and Methods In this prospective study from November 2019 to April 2021, oncologic participants, without known underlying structural heart disease or cardiac symptoms, underwent multiparametric cardiac MRI before planned ICI therapy (baseline) and 3 months after starting ICI therapy (follow-up). The cardiac MRI protocol incorporated assessment of cardiac function, including systolic myocardial strain, myocardial edema, late gadolinium enhancement (LGE), T1 and T2 relaxation times, and extracellular volume fraction. The paired t test, Wilcoxon signed-rank test, and McNemar test were used for intraindividual comparisons. Results Twenty-two participants (mean age ± standard deviation, 65 years ± 14; 13 men) were evaluated, receiving a median of four infusions of ICI therapy (interquartile range, four to six infusions). Compared with baseline MRI, participants displayed increased markers of diffuse myocardial edema at follow-up (T1 relaxation time, 972 msec ± 26 vs 1006 msec ± 36 [P < .001]; T2 relaxation time, 54 msec ± 3 vs 58 msec ± 4 [P < .001]; T2 signal intensity ratio, 1.5 ± 0.3 vs 1.7 ± 0.3 [P = .03]). Left ventricular average systolic longitudinal strain had decreased at follow-up MRI (-23.4% ± 4.8 vs -19.6% ± 5.1, respectively; P = .005). New nonischemic LGE lesions were prevalent in two of 22 participants (9%). Compared with baseline, small pericardial effusions were more evident at follow-up (one of 22 participants [5%] vs 10 of 22 [45%]; P = .004). Conclusion In participants who received immune checkpoint inhibitor therapy for cancer treatment, follow-up cardiac MRI scans showed signs of systolic dysfunction and increased parameters of myocardial edema and inflammation. © RSNA, 2021 Online supplemental material is available for this article.


Subject(s)
Immune Checkpoint Inhibitors/adverse effects , Magnetic Resonance Imaging/methods , Myocarditis/chemically induced , Myocarditis/diagnostic imaging , Aged , Female , Heart/diagnostic imaging , Humans , Male , Prospective Studies
19.
Clin Case Rep ; 9(9): e04782, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34504700

ABSTRACT

Although ruxolitinib contributes to immunomodulation and can lead to severe infections, it seems a feasible treatment strategy for patients with polycythemia vera and myelofibrosis after liver transplantation.

20.
Radiology ; 301(3): E419-E425, 2021 12.
Article in English | MEDLINE | ID: mdl-34374593

ABSTRACT

Background Myocardial injury and inflammation at cardiac MRI in patients with COVID-19 have been described in recent publications. Concurrently, a chronic COVID-19 syndrome (CCS) after SARS-CoV-2 infection has been observed and manifests with symptoms such as fatigue and exertional dyspnea. Purpose To explore the relationship between CCS and myocardial injury and inflammation as an underlying cause of the persistent complaints in previously healthy individuals. Materials and Methods In this prospective study from January 2021 to April 2021, study participants without known cardiac or pulmonary diseases prior to SARS-CoV-2 infection who had persistent CCS symptoms such as fatigue or exertional dyspnea after convalescence and healthy control participants underwent cardiac MRI. The cardiac MRI protocol included evaluating the T1 and T2 relaxation times, extracellular volume, T2 signal intensity ratio, and late gadolinium enhancement (LGE). Student t tests, Mann-Whitney U tests, and χ2 tests were used for statistical analysis. Results Forty-one participants with CCS (mean age, 39 years ± 13 [standard deviation]; 18 men) and 42 control participants (mean age, 39 years ± 16; 26 men) were evaluated. The median time between the initial incidence of mild to moderate COVID-19 not requiring hospitalization and undergoing cardiac MRI was 103 days (interquartile range, 88-158 days). Troponin T levels were normal. Parameters indicating myocardial inflammation and edema were comparable between participants with CCS and control participants (T1 relaxation times: 978 msec ± 23 vs 971 msec ± 25 [P = .17]; T2 relaxation times: 53 msec ± 2 vs 52 msec ± 2 [P = .47]; T2 signal intensity ratios: 1.6 ± 0.2 vs 1.6 ± 0.3 [P = .10]). Visible myocardial edema was present in none of the participants. Three of 41 (7%) participants with CCS demonstrated nonischemic LGE, whereas no participants in the control group demonstrated nonischemic LGE (0 of 42 [0%]; P = .07). None of the participants fulfilled the 2018 Lake Louise criteria for the diagnosis of myocarditis. Conclusion Individuals with chronic COVID-19 syndrome who did not undergo hospitalization for COVID-19 did not demonstrate signs of active myocardial injury or inflammation at cardiac MRI. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Lima and Bluemke in this issue.


Subject(s)
COVID-19/diagnosis , COVID-19/physiopathology , Magnetic Resonance Imaging/methods , Myocarditis/diagnostic imaging , Myocarditis/physiopathology , Adult , COVID-19/complications , Chronic Disease , Female , Heart/diagnostic imaging , Heart/physiopathology , Humans , Male , Myocarditis/etiology , Patient Acuity , Prospective Studies , SARS-CoV-2 , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...