Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(2): e0228362, 2020.
Article in English | MEDLINE | ID: mdl-32017785

ABSTRACT

The histone demethylase JMJD1C is overexpressed in patients with myeloproliferative neoplasms (MPNs) and has been implicated in leukemic stem cell function of MLL-AF9 and HOXA9-driven leukemia. In the emerging field of histone demethylase inhibitors, JMJD1C therefore became a potential target. Depletion of Jmjd1c expression significantly reduced cytokine-independent growth in an MPN cell line, indicating a role for JMJD1C in MPN disease maintenance. Here, we investigated a potential role for the demethylase in MPN disease initiation. We introduced a Cre-inducible JAK2V617F mutation into Jmjd1c knockout mice. We show that Jmjd1c is dispensable, both for healthy hematopoiesis as well as for JAK2V617F-driven MPN disease initiation. Jmjd1c knockout mice did not show any significant changes in peripheral blood composition. Likewise, introduction of JAK2V617F into Jmjd1c-/- mice led to a similar MPN phenotype as JAK2V617F in a Jmjd1c wt background. This indicates that there is a difference between the role of JMJD1C in leukemic stem cells and in MPN. In the latter, JMJC domain-containing family members may serve redundant roles, compensating for the loss of individual proteins.


Subject(s)
Hematopoiesis , Janus Kinase 2/genetics , Jumonji Domain-Containing Histone Demethylases/genetics , Mutation , Myeloproliferative Disorders/genetics , Animals , Case-Control Studies , Cell Line, Tumor , Embryonic Development , Gene Knockout Techniques , Humans , Male , Mice , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL
...