Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Int ; 158: 106989, 2022 01.
Article in English | MEDLINE | ID: mdl-34991250

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs), dioxin-like compounds (DLCs) and structurally-related environmental pollutants may contribute to the pathogenesis of various diseases and disorders, primarily by activating the aryl hydrocarbon receptor (AHR) and modulating downstream cellular responses. Accordingly, AHR is considered an attractive molecular target for preventive and therapeutic measures. However, toxicological risk assessment of AHR-modulating compounds as well as drug development is complicated by the fact that different ligands elicit remarkably different AHR responses. By elucidating the differential effects of PAHs and DLCs on aldo-keto reductase 1C3 expression and associated prostaglandin D2 metabolism, we here provide evidence that the epidermal growth factor receptor (EGFR) substantially shapes AHR ligand-induced responses in human epithelial cells, i.e. primary and immortalized keratinocytes and breast cancer cells. Exposure to benzo[a]pyrene (B[a]P) and dioxin-like polychlorinated biphenyl (PCB) 126 resulted in a rapid c-Src-mediated phosphorylation of EGFR. Moreover, both AHR agonists stimulated protein kinase C activity and enhanced the ectodomain shedding of cell surface-bound EGFR ligands. However, only upon B[a]P treatment, this process resulted in an auto-/paracrine activation of EGFR and a subsequent induction of aldo-keto reductase 1C3 and 11-ketoreduction of prostaglandin D2. Receptor binding and internalization assays, docking analyses and mutational amino acid exchange confirmed that DLCs, but not B[a]P, bind to the EGFR extracellular domain, thereby blocking EGFR activation by growth factors. Finally, nanopore long-read RNA-seq revealed hundreds of genes, whose expression is regulated by B[a]P, but not by PCB126, and sensitive towards pharmacological EGFR inhibition. Our data provide novel mechanistic insights into the ligand response of AHR signaling and identify EGFR as an effector of environmental chemicals.


Subject(s)
Dioxins , Polychlorinated Dibenzodioxins , Polycyclic Aromatic Hydrocarbons , Aldo-Keto Reductase Family 1 Member C3 , ErbB Receptors/genetics , Humans , Polychlorinated Dibenzodioxins/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Receptors, Aryl Hydrocarbon/genetics
2.
Seizure ; 22(6): 483-6, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23601850

ABSTRACT

PURPOSE: The group of the rare progressive myoclonic epilepsies (PME) include a wide spectrum of mitochondrial and metabolic diseases. In juvenile and adult ages, MERRF (myoclonic epilepsy with ragged red fibres) is the most common form. The underlying genetic defect in most patients with the syndrome of MERRF is a mutation in the tRNALys gene, but mutations were also detected in the tRNAPhe gene. METHOD: Here, we describe a 40 year old patient with prominent myoclonic seizures since 39 years of age without a mutation in the known genes who underwent intensive clinical, genetic and functional workup. RESULTS: The patient had a slight mental retardation and a severe progressive hearing loss based on a defect of the inner ear on both sides. Ictal electroencephalography (EEG) showed bilateral occipital and generalized spikes and polyspikes induced and aggravated by photostimulation. A cranial magnetic resonance imaging (cMRI) detected a global cortical atrophy of the brain and mild periventricular white matter lesions. The electromyography (EMG) was normal but the muscle biopsy showed abundant ragged red fibres. Sequencing of the mitochondrial DNA from the skeletal muscle biopsy revealed a novel heteroplasmic mutation (m.4279A>G) in the tRNAIle gene which was functionally relevant as tested in single skeletal muscle fibre investigations. CONCLUSION: Mutations in tRNAIle were described in patients with chronic progressive external ophthalmoplegia (CPEO), prominent deafness or cardiomyopathy but, up to now, not in patients with myoclonic epilepsy. The degree of heteroplasmy of this novel mitochondrial DNA mutation was 70% in skeletal muscle but only 15% in blood, pointing to the diagnostic importance of a skeletal muscle biopsy also in patients with myoclonic epilepsy.


Subject(s)
Mitochondria, Muscle/pathology , Muscle, Skeletal/pathology , Mutation/genetics , Myoclonic Epilepsies, Progressive/genetics , RNA, Transfer/genetics , Adult , Electroencephalography , Humans , Magnetic Resonance Imaging , Male , Muscle, Skeletal/ultrastructure
3.
Neural Plast ; 2012: 467251, 2012.
Article in English | MEDLINE | ID: mdl-22848851

ABSTRACT

Down syndrome is caused by triplication of chromosome 21 and is associated with neurocognitive phenotypes ranging from severe intellectual disability to various patterns of more selective neuropsychological deficits, including memory impairments. In the Ts65Dn mouse model of Down syndrome, excessive GABAergic neurotransmission results in local over-inhibition of hippocampal circuits, which dampens hippocampal synaptic plasticity and contributes to cognitive impairments. Treatments with several GABA(A) receptor antagonists result in increased plasticity and improved memory deficits in Ts65Dn mice. These GABA(A) receptor antagonists are, however, not suitable for clinical applications. The selective serotonin reuptake inhibitor fluoxetine, in contrast, is a widely prescribed antidepressant that can also enhance plasticity in the adult rodent brain by lowering GABAergic inhibition. For these reasons, we wondered if an adult-onset 4-week oral fluoxetine treatment restores spatial learning and memory impairments in Ts65Dn mice. Fluoxetine did not measurably improve behavioral impairments of Ts65Dn mice. On the contrary, we observed seizures and mortality in fluoxetine-treated Ts65Dn mice, raising the possibility of a drug × genotype interaction with respect to these adverse treatment outcomes. Future studies should re-address this in larger animal cohorts and determine if fluoxetine treatment is associated with adverse treatment effects in individuals with Down syndrome.


Subject(s)
Behavior, Animal/drug effects , Down Syndrome/drug therapy , Down Syndrome/psychology , Fluoxetine/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacology , Animals , Body Weight/drug effects , Cell Count , Cognition Disorders/drug therapy , Cognition Disorders/psychology , Down Syndrome/genetics , Female , Fluoxetine/adverse effects , GABA-A Receptor Antagonists/pharmacology , Genotype , Image Processing, Computer-Assisted , Immunohistochemistry , Male , Maze Learning/drug effects , Memory Disorders/drug therapy , Memory Disorders/etiology , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Motor Activity/drug effects , Seizures/chemically induced , Seizures/mortality , Selective Serotonin Reuptake Inhibitors/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...