Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Plant Physiol ; 193(4): 2691-2710, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37610244

ABSTRACT

Fusarium head blight (FHB) of barley (Hordeum vulgare) causes yield losses and accumulation of trichothecene mycotoxins (e.g. deoxynivalenol [DON]) in grains. Glucosylation of DON to the nontoxic DON-3-O-glucoside (D3G) is catalyzed by UDP-glucosyltransferases (UGTs), such as barley UGT13248. We explored the natural diversity of UGT13248 in 496 barley accessions and showed that all carried potential functional alleles of UGT13248, as no genotypes showed strongly increased seedling sensitivity to DON. From a TILLING population, we identified 2 mutant alleles (T368I and H369Y) that, based on protein modeling, likely affect the UDP-glucose binding of UGT13248. In DON feeding experiments, DON-to-D3G conversion was strongly reduced in spikes of these mutants compared to controls, and plants overexpressing UGT13248 showed increased resistance to DON and increased DON-to-D3G conversion. Moreover, field-grown plants carrying the T368I or H369Y mutations inoculated with Fusarium graminearum showed increased FHB disease severity and reduced D3G production. Barley is generally considered to have type II resistance that limits the spread of F. graminearum from the infected spikelet to adjacent spikelets. Point inoculation experiments with F. graminearum showed increased infection spread in T368I and H369Y across the spike compared to wild type, while overexpression plants showed decreased spread of FHB symptoms. Confocal microscopy revealed that F. graminearum spread to distant rachis nodes in T368I and H369Y mutants but was arrested at the rachis node of the inoculated spikelet in wild-type plants. Taken together, our data reveal that UGT13248 confers type II resistance to FHB in barley via conjugation of DON to D3G.


Subject(s)
Fusarium , Hordeum , Hordeum/genetics , Hordeum/metabolism , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Uridine Diphosphate/metabolism , Plant Diseases/genetics
2.
Theor Appl Genet ; 134(12): 3963-3981, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34455452

ABSTRACT

KEY MESSAGE: Fine mapping of barley 6H pericentromeric region identified FHB QTL with opposite effects, and high grain protein content was associated with increased FHB severity. Resistance to Fusarium head blight (FHB), kernel discoloration (KD), deoxynivalenol (DON) accumulation and grain protein content (GPC) are important traits for breeding malting barley varieties. Previous work mapped a Chevron-derived FHB QTL to the pericentromeric region of 6H, coinciding with QTL for KD resistance and GPC. The Chevron allele reduced FHB and KD, but unfavorably increased GPC. To determine whether the correlations are caused by linkage or pleiotropy, a fine mapping approach was used to dissect the QTL underlying these quality and disease traits. Two populations, referred to as Gen10 and Gen10/Lacey, derived from a recombinant near-isogenic line (rNIL) were developed. Recombinants were phenotyped for FHB, KD, DON, GPC and other agronomic traits. Three FHB, two DON and two KD QTLs were identified. One of the three FHB QTLs, one DON QTL and one KD QTL were coincident with the GPC QTL, which contains the Hv-NAM1 locus affecting grain protein accumulation. The Chevron allele at the GPC QTL increased GPC and FHB and decreased DON and KD. The other two FHB QTL and the other DON and KD QTL were identified in the regions flanking the Hv-NAM1 locus, and the Chevron alleles decreased FHB, DON and KD. Our results suggested that the QTL associated with FHB, KD, DON and GPC in the pericentromeric region of 6H was controlled by both pleiotropy and tightly linked loci. The rNILs identified in this study with low FHB severity and moderate GPC may be used for breeding malting barley cultivars.


Subject(s)
Disease Resistance/genetics , Fusarium/pathogenicity , Grain Proteins/analysis , Hordeum/genetics , Plant Diseases/genetics , Alleles , Chromosome Mapping , Chromosomes, Plant/genetics , Genetic Pleiotropy , Genotype , Phenotype , Plant Diseases/microbiology , Quantitative Trait Loci
3.
Front Plant Sci ; 9: 1260, 2018.
Article in English | MEDLINE | ID: mdl-30233612

ABSTRACT

Fusarium head blight (FHB) is an important fungal disease affecting the yield and quality of barley and other small grains. Developing and deploying resistant barley cultivars is an essential component of an integrated strategy for reducing the adverse effects of FHB. Genetic mapping studies have revealed that resistance to FHB and the accumulation of pathogen-produced mycotoxins are controlled by many quantitative trait loci (QTL) with minor effects and are highly influenced by plant morphological traits and environmental conditions. Some prior studies aimed at mapping FHB resistance have used populations derived from crossing a Swiss landrace Chevron with elite breeding lines/cultivars. Both Chevron and Peatland, a sib-line of Chevron, were used as founders in the University of Minnesota barley breeding program. To understand the native resistance that might be present in the Minnesota breeding materials, a cross of an elite cultivar with a susceptible unadapted genotype is required. Here, a mapping population of 93 recombinant inbred lines (RILs) was developed from a cross between a moderately susceptible elite cultivar 'Rasmusson' and a highly susceptible Japanese landrace PI 383933. This population was evaluated for FHB severity, deoxynivalenol (DON) accumulation and various agromorphological traits. Genotyping of the population was performed with the barley iSelect 9K SNP chip and 1,394 SNPs were used to develop a genetic map. FHB severity and DON accumulation were negatively correlated with plant height (HT) and spike length (SL), and positively correlated with spike density (SD). QTL analysis using composite interval mapping (CIM) identified the largest effect QTL associated with FHB and DON on the centromeric region of chromosome 7H, which was also associated with HT, SL, and SD. A minor FHB QTL and a minor DON QTL were detected on chromosome 6H and chromosome 3H, respectively, and the Rasmusson alleles contributed to resistance. The 3H DON QTL likely represents native resistance in elite germplasm as the marker haplotype of Rasmusson at this QTL is distinct from that of Chevron. This study highlights the relationship between FHB resistance/susceptibility and morphological traits and the need for breeders to account for morphology when developing FHB resistant genotypes.

4.
Plant Physiol ; 176(4): 2750-2760, 2018 04.
Article in English | MEDLINE | ID: mdl-29440592

ABSTRACT

The shoot apical and axillary meristems control shoot development, effectively influencing lateral branch and leaf formation. The barley (Hordeum vulgare) uniculm2 (cul2) mutation blocks axillary meristem development, and mutant plants lack lateral branches (tillers) that normally develop from the crown. A genetic screen for cul2 suppressors recovered two recessive alleles of ELIGULUM-A (ELI-A) that partially rescued the cul2 tillering phenotype. Mutations in ELI-A produce shorter plants with fewer tillers and disrupt the leaf blade-sheath boundary, producing liguleless leaves and reduced secondary cell wall development in stems and leaves. ELI-A is predicted to encode an unannotated protein containing an RNaseH-like domain that is conserved in land plants. ELI-A transcripts accumulate at the preligule boundary, the developing ligule, leaf margins, cells destined to develop secondary cell walls, and cells surrounding leaf vascular bundles. Recent studies have identified regulatory similarities between boundary development in leaves and lateral organs. Interestingly, we observed ELI-A transcripts at the preligule boundary, suggesting that ELI-A contributes to boundary formation between the blade and sheath. However, we did not observe ELI-A transcripts at the axillary meristem boundary in leaf axils, suggesting that ELI-A is not involved in boundary development for axillary meristem development. Our results show that ELI-A contributes to leaf and lateral branch development by acting as a boundary gene during ligule development but not during lateral branch development.


Subject(s)
Hordeum/genetics , Meristem/genetics , Plant Leaves/genetics , Plant Proteins/genetics , Flowers/genetics , Flowers/growth & development , Flowers/metabolism , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Hordeum/growth & development , Hordeum/metabolism , Meristem/growth & development , Meristem/metabolism , Mutation , Phylogeny , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Proteins/classification , Plant Proteins/metabolism , Plant Stems/growth & development , Plant Stems/metabolism
5.
Nat Genet ; 48(9): 1024-30, 2016 09.
Article in English | MEDLINE | ID: mdl-27428750

ABSTRACT

After domestication, during a process of widespread range extension, barley adapted to a broad spectrum of agricultural environments. To explore how the barley genome responded to the environmental challenges it encountered, we sequenced the exomes of a collection of 267 georeferenced landraces and wild accessions. A combination of genome-wide analyses showed that patterns of variation have been strongly shaped by geography and that variant-by-environment associations for individual genes are prominent in our data set. We observed significant correlations of days to heading (flowering) and height with seasonal temperature and dryness variables in common garden experiments, suggesting that these traits were major drivers of environmental adaptation in the sampled germplasm. A detailed analysis of known flowering-associated genes showed that many contain extensive sequence variation and that patterns of single- and multiple-gene haplotypes exhibit strong geographical structuring. This variation appears to have substantially contributed to range-wide ecogeographical adaptation, but many factors key to regional success remain unidentified.


Subject(s)
Adaptation, Physiological/genetics , Environment , Exome/genetics , Genes, Plant/genetics , Genetic Variation/genetics , Genome-Wide Association Study , Genotype , Geography , Hordeum , Phenotype
6.
Plant J ; 84(1): 216-27, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26252423

ABSTRACT

Barley (Hordeum vulgare L.) possesses a large and highly repetitive genome of 5.1 Gb that has hindered the development of a complete sequence. In 2012, the International Barley Sequencing Consortium released a resource integrating whole-genome shotgun sequences with a physical and genetic framework. However, because only 6278 bacterial artificial chromosome (BACs) in the physical map were sequenced, fine structure was limited. To gain access to the gene-containing portion of the barley genome at high resolution, we identified and sequenced 15 622 BACs representing the minimal tiling path of 72 052 physical-mapped gene-bearing BACs. This generated ~1.7 Gb of genomic sequence containing an estimated 2/3 of all Morex barley genes. Exploration of these sequenced BACs revealed that although distal ends of chromosomes contain most of the gene-enriched BACs and are characterized by high recombination rates, there are also gene-dense regions with suppressed recombination. We made use of published map-anchored sequence data from Aegilops tauschii to develop a synteny viewer between barley and the ancestor of the wheat D-genome. Except for some notable inversions, there is a high level of collinearity between the two species. The software HarvEST:Barley provides facile access to BAC sequences and their annotations, along with the barley-Ae. tauschii synteny viewer. These BAC sequences constitute a resource to improve the efficiency of marker development, map-based cloning, and comparative genomics in barley and related crops. Additional knowledge about regions of the barley genome that are gene-dense but low recombination is particularly relevant.


Subject(s)
Chromosomes, Artificial, Bacterial/genetics , Genome, Plant/genetics , Hordeum/genetics , Molecular Sequence Data
7.
Mol Plant Microbe Interact ; 28(11): 1237-46, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26214711

ABSTRACT

Fusarium head blight (FHB), mainly caused by Fusarium graminearum, is a devastating disease of wheat that results in economic losses worldwide. During infection, F. graminearum produces trichothecene mycotoxins, including deoxynivalenol (DON), that increase fungal virulence and reduce grain quality. Transgenic wheat expressing a barley UDP-glucosyltransferase (HvUGT13248) were developed and evaluated for FHB resistance, DON accumulation, and the ability to metabolize DON to the less toxic DON-3-O-glucoside (D3G). Point-inoculation tests in the greenhouse showed that transgenic wheat carrying HvUGT13248 exhibited significantly higher resistance to disease spread in the spike (type II resistance) compared with nontransformed controls. Two transgenic events displayed complete suppression of disease spread in the spikes. Expression of HvUGT13248 in transgenic wheat rapidly and efficiently conjugated DON to D3G, suggesting that the enzymatic rate of DON detoxification translates to type II resistance. Under field conditions, FHB severity was variable; nonetheless, transgenic events showed significantly less-severe disease phenotypes compared with the nontransformed controls. In addition, a seedling assay demonstrated that the transformed plants had a higher tolerance to DON-inhibited root growth than nontransformed plants. These results demonstrate the utility of detoxifying DON as a FHB control strategy in wheat.


Subject(s)
Fusarium/metabolism , Glucosyltransferases/metabolism , Hordeum/enzymology , Plant Proteins/metabolism , Trichothecenes/metabolism , Triticum/metabolism , Blotting, Southern , Blotting, Western , Disease Resistance/genetics , Fusarium/physiology , Glucosides/metabolism , Glucosyltransferases/genetics , Hordeum/genetics , Host-Pathogen Interactions , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Proteins/genetics , Plants, Genetically Modified , Triticum/genetics , Triticum/microbiology , Uridine Diphosphate/metabolism
8.
Funct Integr Genomics ; 13(1): 33-41, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23086595

ABSTRACT

Vegetative axillary meristem (AXM) activity results in the production of branches. In barley (Hordeum vulgare L.), vegetative AXM develop in the crown and give rise to modified branches, referred to as tillers. Mutations in the barley low-tillering mutant uniculm2 block vegetative AXM development and prevent tiller development. The objectives of this work were to examine gene expression in wild-type and cul2 mutant plants, fine map the CUL2 gene, and to examine synteny in the CUL2 region in barley with rice. RNA profiling experiments using two near-isogenic line pairs carrying either the cul2 mutant allele or wild-type CUL2 allele in different genetic backgrounds detected 28 unique gene transcripts exhibiting similar patterns of differential accumulation in both genetic backgrounds, indicating that we have identified key genes impacted by the CUL2 gene. Twenty-four genes had higher abundance in uniculm2 mutant tissues, and nearly half of the annotated genes likely function in stress-response or signal transduction pathways. Genetic mapping identified five co-segregating markers in 1,088 F2 individuals. These markers spanned the centromere region on chromosome 6H, and coincided with a 50-cM region on rice chromosome 2, indicating that it may be difficult to positionally clone CUL2. Taken together, the results revealed stress response and signal transduction pathways that are associated with the CUL2 gene, isolating CUL2 via positional cloning approaches that may be difficult, and the remnants of barley-rice synteny in the CUL2 region.


Subject(s)
Centromere/genetics , Genes, Plant , Hordeum/genetics , Chromosome Mapping , Chromosomes, Plant/genetics , Mutation , Oryza/genetics , Signal Transduction/genetics , Stress, Physiological/genetics , Synteny , Transcription, Genetic
9.
J Exp Bot ; 63(13): 4731-40, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22922639

ABSTRACT

Fusarium head blight (FHB), caused by Fusarium graminearum, is a devastating disease of small grain cereal crops. FHB causes yield reductions and contamination of grain with trichothecene mycotoxins such as deoxynivalenol (DON). DON inhibits protein synthesis in eukaryotic cells and acts as a virulence factor during fungal pathogenesis, therefore resistance to DON is considered an important component of resistance against FHB. One mechanism of resistance to DON is conversion of DON to DON-3-O-glucoside (D3G). Previous studies showed that expression of the UDP-glucosyltransferase genes HvUGT13248 from barley and AtUGt73C5 (DOGT1) from Arabidopsis thaliana conferred DON resistance to yeast. Over-expression of AtUGt73C5 in Arabidopsis led to increased DON resistance of seedlings but also to dwarfing of transgenic plants due to the formation of brassinosteroid-glucosides. The objectives of this study were to develop transgenic Arabidopsis expressing HvUGT13248, to test for phenotypic changes in growth habit, and the response to DON. Transgenic lines that constitutively expressed the epitope-tagged HvUGT13248 protein exhibited increased resistance to DON in a seed germination assay and converted DON to D3G to a higher extent than the untransformed wild-type. By contrast to the over-expression of DOGT1 in Arabidopsis, which conjugated the brassinosteriod castasterone with a glucoside group resulting in a dwarf phenotype, expression of the barley HvUGT13248 gene did not lead to drastic morphological changes. Consistent with this observation, no castasterone-glucoside formation was detectable in yeast expressing the barley HvUGT13248 gene. This barley UGT is therefore a promising candidate for transgenic approaches aiming to increase DON and Fusarium resistance of crop plants without undesired collateral effects.


Subject(s)
Arabidopsis/drug effects , Arabidopsis/enzymology , Glucosyltransferases/metabolism , Hordeum/enzymology , Protein Synthesis Inhibitors/pharmacology , Trichothecenes/pharmacology , Arabidopsis/genetics , Arabidopsis/growth & development , Brassinosteroids/metabolism , Flowers/drug effects , Flowers/enzymology , Flowers/genetics , Flowers/growth & development , Gene Expression , Germination/drug effects , Glucosides/metabolism , Glucosyltransferases/genetics , Hordeum/genetics , Inactivation, Metabolic , Phenotype , Plant Leaves/drug effects , Plant Leaves/enzymology , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/drug effects , Plant Roots/enzymology , Plant Roots/genetics , Plant Roots/growth & development , Plants, Genetically Modified , Seedlings/drug effects , Seedlings/enzymology , Seedlings/genetics , Seedlings/growth & development , Transgenes , Virulence Factors
10.
Theor Appl Genet ; 121(4): 705-15, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20407739

ABSTRACT

Barley (Hordeum vulgare L.) carrying recessive mutations at the Low number of tillers1 (Lnt1) gene does not develop secondary tillers and only develops one to four tillers by maturity. Double mutant analysis determined that the lnt1 mutant was epistatic to five of the six low and high tillering mutants tested. Double mutants of lnt1 and the low tillering mutant intermedium-b (int-b) resulted in a uniculm plant, indicating a synergistic interaction and that Lnt and Int-b function in separate tillering pathways. RNA profiling identified 70 transcripts with either increased or decreased abundance in the lnt1 mutant compared to wild-type. One gene with reduced transcript levels in the lnt1 mutant was the BELL-like homeodomain transcription factor JuBel2. The JuBel2 allele in the lnt1.a mutant contained a frameshift mutation that eliminated most of the predicted polypeptide, indicating that the Lnt1 gene encodes JuBel2. Previous studies with the low-tillering mutant absent lower laterals (als) showed that the tillering phenotypes and genetic interactions of als and lnt1 with other tillering mutants were very similar. However, the transcriptomes were very different; many transcripts annotated as stress and defense response exhibited increased abundance in the als mutant. This difference suggests a functional separation between Als and Lnt1 in the genetic control of tillering.


Subject(s)
Genes, Plant/genetics , Hordeum/anatomy & histology , Hordeum/genetics , Mutation/genetics , Plant Proteins/genetics , Plant Shoots/genetics , Base Sequence , Gene Expression Profiling , Gene Expression Regulation, Plant , Molecular Sequence Data , Phenotype , Plant Proteins/metabolism , Plant Shoots/cytology , RNA, Messenger/genetics , RNA, Messenger/metabolism
11.
J Exp Bot ; 59(9): 2371-8, 2008.
Article in English | MEDLINE | ID: mdl-18467324

ABSTRACT

Fusarium head blight (FHB; scab), primarily caused by Fusarium graminearum, is a devastating disease of wheat worldwide. FHB causes yield reductions and contamination of grains with trichothecene mycotoxins such as deoxynivalenol (DON). The genetic variation in existing wheat germplasm pools for FHB resistance is low and may not provide sufficient resistance to develop cultivars through traditional breeding approaches. Thus, genetic engineering provides an additional approach to enhance FHB resistance. The objectives of this study were to develop transgenic wheat expressing a barley class II chitinase and to test the transgenic lines against F. graminearum infection under greenhouse and field conditions. A barley class II chitinase gene was introduced into the spring wheat cultivar, Bobwhite, by biolistic bombardment. Seven transgenic lines were identified that expressed the chitinase transgene and exhibited enhanced Type II resistance in the greenhouse evaluations. These seven transgenic lines were tested under field conditions for percentage FHB severity, percentage visually scabby kernels (VSK), and DON accumulation. Two lines (C8 and C17) that exhibited high chitinase protein levels also showed reduced FHB severity and VSK compared to Bobwhite. One of the lines (C8) also exhibited reduced DON concentration compared with Bobwhite. These results showed that transgenic wheat expressing a barley class II chitinase exhibited enhanced resistance against F. graminearum in greenhouse and field conditions.


Subject(s)
Chitinases/metabolism , Fusarium/physiology , Genetic Engineering , Immunity, Innate , Plant Diseases/microbiology , Triticum/immunology , Triticum/microbiology , Chitinases/genetics , Gene Expression , Hordeum/enzymology , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/immunology , Plants, Genetically Modified/microbiology , Triticum/genetics
12.
Plant Cell Rep ; 26(4): 479-88, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17103001

ABSTRACT

Fusarium head blight (FHB) of wheat, caused by Fusarium graminearum and other Fusarium species, is a major disease problem for wheat production worldwide. To combat this problem, large-scale breeding efforts have been established. Although progress has been made through standard breeding approaches, the level of resistance attained is insufficient to withstand epidemic conditions. Genetic engineering provides an alternative approach to enhance the level of resistance. Many defense response genes are induced in wheat during F. graminearum infection and may play a role in reducing FHB. The objectives of this study were (1) to develop transgenic wheat overexpressing the defense response genes alpha-1-purothionin, thaumatin-like protein 1 (tlp-1), and beta-1,3-glucanase; and (2) to test the resultant transgenic wheat lines against F. graminearum infection under greenhouse and field conditions. Using the wheat cultivar Bobwhite, we developed one, two, and four lines carrying the alpha-1-purothionin, tlp-1, and beta-1,3-glucanase transgenes, respectively, that had statistically significant reductions in FHB severity in greenhouse evaluations. We tested these seven transgenic lines under field conditions for percent FHB disease severity, deoxynivalenol (DON) mycotoxin accumulation, and percent visually scabby kernels (VSK). Six of the seven lines differed from the nontransgenic parental Bobwhite line for at least one of the disease traits. A beta-1,3-glucanase transgenic line had enhanced resistance, showing lower FHB severity, DON concentration, and percent VSK compared to Bobwhite. Taken together, the results showed that overexpression of defense response genes in wheat could enhance the FHB resistance in both greenhouse and field conditions.


Subject(s)
Fusarium/growth & development , Plant Diseases/genetics , Triticum/genetics , Blotting, Southern , Blotting, Western , Glucan 1,3-beta-Glucosidase/genetics , Glucan 1,3-beta-Glucosidase/metabolism , Plant Diseases/microbiology , Plants, Genetically Modified , Reverse Transcriptase Polymerase Chain Reaction , Transformation, Genetic , Triticum/metabolism , Triticum/microbiology
13.
Mol Genet Genomics ; 275(6): 553-63, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16468023

ABSTRACT

Transposable elements are ubiquitous genomic parasites with an ancient history of coexistence with their hosts. A few cases have emerged recently where these genetic elements have been recruited for normal function in the host organism. We have identified an expressed hobo/Ac/Tam (hAT) family transposase-like gene in cereal grasses which appears to represent such a case. This gene, which we have called gary, is found in one or two copies in barley, two diverged copies in rice and two very similar copies in hexaploid wheat. No gary homologues are found in Arabidopsis. In all three cereal species, an apparently complete 2.5 kb transposase-like open reading frame is present and nucleotide substitution data show evidence for positive selection, yet the predicted gary protein is probably not an active transposase, as judged by the absence of key amino acids required for transposase function. Gary is expressed in wheat and barley spikes and gary cDNA sequences are also found in rice, oat, rye, maize, sorghum and sugarcane. The short inverted terminal repeats, flanked by an eight-nucleotide host sequence duplication, which are characteristic of a hAT transposon are absent. Genetic mapping in barley shows that gary is located on the distal end of the long arm of chromosome 2H. Wheat homologues of gary map to the same approximate location on the wheat group 2 chromosomes by physical bin-mapping and the more closely related of the two rice garys maps to the syntenic location near the bottom of rice chromosome 4. These data suggest that gary has resided in a single genomic location for at least 60 Myr and has lost the ability to transpose, yet expresses a transposase-related protein that is being conserved under host selection. We propose that the gary transposase-like gene has been recruited by the cereal grasses for an unknown function.


Subject(s)
Genome, Plant , Poaceae/genetics , Transposases/genetics , Amino Acid Sequence , Base Sequence , DNA Primers , DNA, Plant/genetics , Hordeum/genetics , Molecular Sequence Data , Sequence Homology, Amino Acid , Transposases/chemistry
14.
Plant Cell Rep ; 25(4): 313-9, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16252090

ABSTRACT

Fusarium head blight (FHB), caused primarily by Fusarium graminearum, is a major disease problem in wheat (Triticum aestivum). Genetic engineering holds significant potential to enhance FHB resistance in wheat. Due to the requirement of screening for FHB resistance on flowers at anthesis, the number of screens carried out in a year is limited. Our objective was to evaluate the feasibility of using the rapid-maturing dwarf wheat cultivar Apogee as an alternative genotype for transgenic FHB resistance research. Our transformation efficiency (number of transgenic plants/number of embryos) for Apogee was 1.33%. Apogee was also found to exhibit high FHB susceptibility and reached anthesis within 4 weeks. Interestingly, microsatellite marker haplotype analysis of the chromosome 3BS FHB resistant quantitative trait locus (QTL) region indicated that this region maybe deleted in Apogee. Our results indicate that Apogee is particularly well suited for accelerating transgenic FHB resistance research and transgenic wheat research in general.


Subject(s)
Fusarium/physiology , Plant Diseases/genetics , Plant Diseases/microbiology , Triticum/genetics , Triticum/microbiology , Genetic Engineering , Models, Biological , Transformation, Genetic , Triticum/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...