Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Chip ; 24(3): 492-504, 2024 01 30.
Article in English | MEDLINE | ID: mdl-38164805

ABSTRACT

The COVID-19 pandemic increased demands for respiratory disease testing to facilitate treatment and limit transmission, demonstrating in the process that most existing test options were too complex and expensive to perform in point-of-care or home scenarios. Lab-based molecular techniques can detect viral RNA in respiratory illnesses but are expensive and require trained personnel, while affordable antigen-based home tests lack sensitivity for early detection in newly infected or asymptomatic individuals. The few home RNA detection tests deployed were prohibitively expensive. Here, we demonstrate a point-of-care, paper-based rapid analysis device that simultaneously detects multiple viral RNAs; it is demonstrated on two common respiratory viruses (COVID-19 and influenza A) spiked onto a commercial nasal swab. The automated device requires no sample preparation by the user after insertion of the swab, minimizing user operation steps. We incorporated lyophilized amplification reagents immobilized in a porous matrix, a novel thermally actuated valve for multiplexed fluidic control, a printed circuit board that performs on-device lysis and amplification within a cell-phone-sized disposable device. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) products are visualized via fluorescent dyes using a modified cell phone, resulting in detection of as few as 104 viral copies per swab across both pathogens within 30 minutes. This integrated platform could be commercialized in a form that would be inexpensive, portable, and sensitive; it can readily be multiplexed to detect as many as 8 different RNA or DNA sequences, and adapted to any desired RNA or DNA detection assays.


Subject(s)
COVID-19 , Nucleic Acids , Humans , Point-of-Care Systems , Pandemics , Nucleic Acid Amplification Techniques , COVID-19/diagnosis , Molecular Diagnostic Techniques/methods , RNA, Viral/genetics , RNA, Viral/analysis , Sensitivity and Specificity , COVID-19 Testing
2.
Lab Chip ; 16(19): 3777-87, 2016 10 07.
Article in English | MEDLINE | ID: mdl-27549897

ABSTRACT

The prototype demonstrated here is the first fully integrated sample-to-result diagnostic platform for performing nucleic acid amplification tests that requires no permanent instrument or manual sample processing. The multiplexable autonomous disposable nucleic acid amplification test (MAD NAAT) is based on two-dimensional paper networks, which enable sensitive chemical detection normally reserved for laboratories to be carried out anywhere by untrained users. All reagents are stored dry in the disposable test device and are rehydrated by stored buffer. The paper network is physically multiplexed to allow independent isothermal amplification of multiple targets; each amplification reaction is also chemically multiplexed with an internal amplification control. The total test time is less than one hour. The MAD NAAT prototype was used to characterize a set of human nasal swab specimens pre-screened for methicillin-resistant Staphylococcus aureus (MRSA) bacteria. With qPCR as the quantitative reference method, the lowest input copy number in the range where the MAD NAAT prototype consistently detected MRSA in these specimens was ∼5 × 10(3) genomic copies (∼600 genomic copies per biplexed amplification reaction).


Subject(s)
Nucleic Acid Amplification Techniques/methods , Equipment Design , Humans , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Nose/microbiology , Nucleic Acid Amplification Techniques/instrumentation , Paper , Time Factors
3.
J Microbiol Methods ; 128: 80-87, 2016 09.
Article in English | MEDLINE | ID: mdl-27424294

ABSTRACT

Nucleic acid sample preparation has been an especially challenging barrier to point-of-care nucleic acid amplification tests in low-resource settings. Here we provide a head-to-head comparison of methods for lysis of, and nucleic acid release from, several pathogenic bacteria and viruses-methods that are adaptable to point-of-care usage in low-resource settings. Digestion with achromopeptidase, a mixture of proteases and peptidoglycan-specific hydrolases, followed by thermal deactivation in a boiling water bath, effectively released amplifiable nucleic acid from Staphylococcus aureus, Bordetella pertussis, respiratory syncytial virus, and influenza virus. Achromopeptidase was functional after dehydration and reconstitution, even after eleven months of dry storage without refrigeration. Mechanical lysis methods proved to be effective against a hard-to-lyse Mycobacterium species, and a miniature bead-mill, the AudioLyse, is shown to be capable of releasing amplifiable DNA and RNA from this species. We conclude that point-of-care-compatible sample preparation methods for nucleic acid tests need not introduce amplification inhibitors, and can provide amplification-ready lysates from a wide range of bacterial and viral pathogens.


Subject(s)
DNA, Bacterial/isolation & purification , DNA, Viral/isolation & purification , Point-of-Care Systems , Bordetella pertussis/isolation & purification , Mycobacterium/isolation & purification , Nucleic Acid Amplification Techniques , Orthomyxoviridae/isolation & purification , Respiratory Syncytial Viruses/isolation & purification , Staphylococcus aureus/isolation & purification
4.
Microbiologyopen ; 4(4): 597-603, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26097040

ABSTRACT

In microbes that fix nitrogen, nitrogenase catalyzes the conversion of N2 to ammonia in an ATP-demanding reaction. To help conserve energy some bacteria inhibit nitrogenase activity upon exposure to ammonium. The purple nonsulfur phototrophic bacterium Rhodopseudomonas palustris strain CGA009 can synthesize three functional nitrogenase isoenzymes: a molybdenum nitrogenase, a vanadium nitrogenase, and an iron nitrogenase. Previous studies showed that in some alphaproteobacteria, including R. palustris, molybdenum nitrogenase activity is inhibited by ADP-ribosylation when cells are exposed to ammonium. Some iron nitrogenases are also posttranslationally modified. However, the posttranslational modification of vanadium nitrogenase has not been reported. Here, we investigated the regulation of the alternative nitrogenases of R. palustris and determined that both its vanadium nitrogenase and its iron nitrogenase activities were inhibited and posttranslationally modified when cells are exposed to ammonium. Vanadium nitrogenase is not found in all strains of R. palustris, suggesting that it may have been acquired by horizontal gene transfer. Also, phylogenetic analyses of the three nitrogenases suggest that VnfH, the target of ADP-ribosylation, may be the product of a gene duplication of nifH, the molybdenum nitrogenase homolog.


Subject(s)
Ammonia/metabolism , Gene Expression Regulation, Bacterial/drug effects , Gene Expression Regulation, Enzymologic/drug effects , Nitrogenase/metabolism , Protein Processing, Post-Translational , Rhodopseudomonas/enzymology , Cluster Analysis , Nitrogenase/genetics , Phylogeny , Rhodopseudomonas/metabolism , Sequence Homology
5.
Appl Environ Microbiol ; 78(4): 1023-32, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22179236

ABSTRACT

Nitrogenase catalyzes the conversion of dinitrogen gas (N(2)) and protons to ammonia and hydrogen gas (H(2)). This is a catalytically difficult reaction that requires large amounts of ATP and reducing power. Thus, nitrogenase is not normally expressed or active in bacteria grown with a readily utilized nitrogen source like ammonium. nifA* mutants of the purple nonsulfur phototrophic bacterium Rhodopseudomonas palustris have been described that express nitrogenase genes constitutively and produce H(2) when grown with ammonium as a nitrogen source. This raised the regulatory paradox of why these mutants are apparently resistant to a known posttranslational modification system that should switch off the activity of nitrogenase. Microarray, mutation analysis, and gene expression studies showed that posttranslational regulation of nitrogenase activity in R. palustris depends on two proteins: DraT2, an ADP-ribosyltransferase, and GlnK2, an NtrC-regulated P(II) protein. GlnK2 was not well expressed in ammonium-grown NifA* cells and thus not available to activate the DraT2 nitrogenase modification enzyme. In addition, the NifA* strain had elevated nitrogenase activity due to overexpression of the nif genes, and this increased amount of expression overwhelmed a basal level of activity of DraT2 in ammonium-grown cells. Thus, insufficient levels of both GlnK2 and DraT2 allow H(2) production by an nifA* mutant grown with ammonium. Inactivation of the nitrogenase posttranslational modification system by mutation of draT2 resulted in increased H(2) production by ammonium-grown NifA* cells.


Subject(s)
Hydrogen/metabolism , Nitrogenase/metabolism , Protein Processing, Post-Translational , Rhodopseudomonas/enzymology , Rhodopseudomonas/metabolism , Gases/metabolism , Gene Expression Profiling , Microarray Analysis , Quaternary Ammonium Compounds/metabolism
6.
Appl Environ Microbiol ; 76(23): 7717-22, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20889777

ABSTRACT

A challenge for photobiological production of hydrogen gas (H(2)) as a potential biofuel is to find suitable electron-donating feedstocks. Here, we examined the inorganic compound thiosulfate as a possible electron donor for nitrogenase-catalyzed H(2) production by the purple nonsulfur phototrophic bacterium (PNSB) Rhodopseudomonas palustris. Thiosulfate is an intermediate of microbial sulfur metabolism in nature and is also generated in industrial processes. We found that R. palustris grew photoautotrophically with thiosulfate and bicarbonate and produced H(2) when nitrogen gas was the sole nitrogen source (nitrogen-fixing conditions). In addition, illuminated nongrowing R. palustris cells converted about 80% of available electrons from thiosulfate to H(2). H(2) production with acetate and succinate as electron donors was less efficient (40 to 60%), partly because nongrowing cells excreted the intermediary metabolite α-ketoglutarate into the culture medium. The fixABCX operon (RPA4602 to RPA4605) encoding a predicted electron-transfer complex is necessary for growth using thiosulfate under nitrogen-fixing conditions and may serve as a point of engineering to control rates of H(2) production. The possibility to use thiosulfate expands the range of electron-donating compounds for H(2) production by PNSBs beyond biomass-based electron donors.


Subject(s)
Gases/metabolism , Hydrogen/metabolism , Light , Rhodopseudomonas/metabolism , Thiosulfates/metabolism , Acetates/metabolism , Bicarbonates/metabolism , Nitrogen/metabolism , Nitrogenase/metabolism , Oxidation-Reduction , Succinic Acid/metabolism
7.
Mol Microbiol ; 76(4): 874-88, 2010 May.
Article in English | MEDLINE | ID: mdl-20345662

ABSTRACT

Rhodopseudomonas palustris grows photoheterotrophically on aromatic compounds available in aquatic environments rich in plant-derived lignin. Benzoate degradation is regulated at the transcriptional level in R. palustris in response to anoxia and the presence of benzoate and/or benzoyl-CoA (Bz-CoA). Here, we report evidence that anaerobic benzoate catabolism in this bacterium is also regulated at the post-translational level. In this pathway, benzoate is activated to Bz-CoA by the AMP-forming Bz-CoA synthetase (BadA) enzyme. Mass spectrometry and mutational analysis data indicate that residue Lys512 is critical to BadA activity. Acetylation of Lys512 inactivated BadA; deacetylation reactivated BadA. Likewise, 4-hydroxybenzoyl-CoA (HbaA) and cyclohexanecarboxyl-CoA (AliA) synthetases were also reversibly acetylated. We identified one acetyltransferase that modified BadA, Hba and AliA in vitro. The acetyltransferase enzyme is homologous to the protein acetyltransferase (Pat) enzyme of Salmonella enterica sv Typhimurium LT2, thus we refer to it as RpPat. RpPat also modified acetyl-CoA (Ac-CoA) synthetase (Acs) from R. palustris. In vivo data indicate that at least two deacetylases reactivate BadA(Ac). One is SrtN (encoded by srtN, formerly rpa2524), a sirtuin-type NAD(+)-dependent deacetylase (O-acetyl-ADPribose-forming); the other deacetylase is LdaA (encoded by ldaA, for lysine deacetylase A; formerly rpa0954), an acetate-forming protein deacetylase. LdaA reactivated Hba(Ac) and AliA(Ac)in vitro.


Subject(s)
Benzoates/metabolism , Coenzyme A Ligases/metabolism , Lysine/metabolism , Protein Processing, Post-Translational , Rhodopseudomonas/enzymology , Acetylation , Amino Acid Sequence , Anaerobiosis , Benzoates/chemistry , Coenzyme A Ligases/genetics , Lysine/genetics , Molecular Sequence Data
8.
Structure ; 15(3): 363-76, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17355871

ABSTRACT

PilT is a hexameric ATPase required for bacterial type IV pilus retraction and surface motility. Crystal structures of ADP- and ATP-bound Aquifex aeolicus PilT at 2.8 and 3.2 A resolution show N-terminal PAS-like and C-terminal RecA-like ATPase domains followed by a set of short C-terminal helices. The hexamer is formed by extensive polar subunit interactions between the ATPase core of one monomer and the N-terminal domain of the next. An additional structure captures a nonsymmetric PilT hexamer in which approach of invariant arginines from two subunits to the bound nucleotide forms an enzymatically competent active site. A panel of pilT mutations highlights the importance of the arginines, the PAS-like domain, the polar subunit interface, and the C-terminal helices for retraction. We present a model for ATP binding leading to dramatic PilT domain motions, engagement of the arginine wire, and subunit communication in this hexameric motor. Our conclusions apply to the entire type II/IV secretion ATPase family.


Subject(s)
Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/physiology , Bacterial Proteins/chemistry , Bacterial Proteins/physiology , Fimbriae, Bacterial/physiology , Molecular Motor Proteins/chemistry , Molecular Motor Proteins/physiology , Movement/physiology , Protein Subunits/chemistry , Protein Subunits/physiology , Adenosine Triphosphatases/genetics , Amino Acid Sequence , Arginine/chemistry , Bacterial Proteins/genetics , Crystallography, X-Ray , Fimbriae, Bacterial/genetics , Molecular Motor Proteins/genetics , Molecular Sequence Data , Protein Structure, Tertiary/genetics , Protein Subunits/genetics
9.
Appl Environ Microbiol ; 73(5): 1665-71, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17220249

ABSTRACT

A major route for hydrogen production by purple photosynthetic bacteria is biological nitrogen fixation. Nitrogenases reduce atmospheric nitrogen to ammonia with the concomitant obligate production of molecular hydrogen. However, hydrogen production in the context of nitrogen fixation is a rather inefficient process because about 75% of the reductant consumed by the nitrogenase is used to generate ammonia. In this study we describe a selection strategy to isolate strains of purple photosynthetic bacteria in which hydrogen production is necessary for growth and independent of nitrogen fixation. We obtained four mutant strains of the photosynthetic bacterium Rhodopseudomonas palustris that produce hydrogen constitutively, even in the presence of ammonium, a condition where wild-type cells do not accumulate detectable amounts of hydrogen. Some of these strains produced up to five times more hydrogen than did wild-type cells growing under nitrogen-fixing conditions. Transcriptome analyses of the hydrogen-producing mutant strains revealed that in addition to the nitrogenase genes, 18 other genes are potentially required to produce hydrogen. The mutations that caused constitutive hydrogen production mapped to four different sites in the NifA transcriptional regulator in the four different strains. The strategy presented here can be applied to the large number of diverse species of anoxygenic photosynthetic bacteria that are known to exist in nature to identify strains for which there are fitness incentives to produce hydrogen.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Hydrogen/metabolism , Nitrogenase/metabolism , Rhodopseudomonas/genetics , Bacterial Proteins/genetics , Molecular Sequence Data , Mutation , Nitrogen Fixation , Nitrogenase/genetics , Oligonucleotide Array Sequence Analysis , Photosynthesis , Proteome , Quaternary Ammonium Compounds/metabolism , Rhodopseudomonas/growth & development , Rhodopseudomonas/metabolism , Sequence Analysis, DNA , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...