Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol Chem ; 42(1): 100-116, 2023 01.
Article in English | MEDLINE | ID: mdl-36282016

ABSTRACT

To reduce the use of intact animals for chemical safety testing, while ensuring protection of ecosystems and human health, there is a demand for new approach methodologies (NAMs) that provide relevant scientific information at a quality equivalent to or better than traditional approaches. The present case study examined whether bioactivity and associated potency measured in an in vitro screening assay for aromatase inhibition could be used together with an adverse outcome pathway (AOP) and mechanistically based computational models to predict previously uncharacterized in vivo effects. Model simulations were used to inform designs of 60-h and 10-21-day in vivo exposures of adult fathead minnows (Pimephales promelas) to three or four test concentrations of the in vitro aromatase inhibitor imazalil ranging from 0.12 to 260 µg/L water. Consistent with an AOP linking aromatase inhibition to reproductive impairment in fish, exposure to the fungicide resulted in significant reductions in ex vivo production of 17ß-estradiol (E2) by ovary tissue (≥165 µg imazalil/L), plasma E2 concentrations (≥74 µg imazalil/L), vitellogenin (Vtg) messenger RNA expression (≥165 µg imazalil/L), Vtg plasma concentrations (≥74 µg imazalil/L), uptake of Vtg into oocytes (≥260 µg imazalil/L), and overall reproductive output in terms of cumulative fecundity, number of spawning events, and eggs per spawning event (≥24 µg imazalil/L). Despite many potential sources of uncertainty in potency and efficacy estimates based on model simulations, observed magnitudes of apical effects were quite consistent with model predictions, and in vivo potency was within an order of magnitude of that predicted based on in vitro relative potency. Overall, our study suggests that NAMs and AOP-based approaches can support meaningful reduction and refinement of animal testing. Environ Toxicol Chem 2023;42:100-116. © 2022 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Subject(s)
Cyprinidae , Ovary , Humans , Animals , Female , Aromatase/genetics , Aromatase/metabolism , Fadrozole/toxicity , Ecotoxicology , Ecosystem , Estradiol/metabolism , Cyprinidae/physiology , Vitellogenins/metabolism
2.
Environ Toxicol Chem ; 25(11): 3015-23, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17089726

ABSTRACT

The hazard for photoactivated toxicity of polycyclic aromatic hydrocarbons (PAHs) has been clearly demonstrated; however, to our knowledge, the risk in contaminated systems has not been characterized. To address this question, a median lethal dose (LD50) for fluoranthene photoactivated toxicity in medaka (Orvzias latipes) embryos was determined experimentally and then compared with ultraviolet-A (UV-A; 320-400 nm) radiation exposures in a PAH-contaminated field site. The dose metric, J/cm2/ microg fluoranthene/g egg wet weight, provided the means to estimate risk as the depth where the LD50 level would be exceeded at realistic field PAH concentrations, based on estimates of UV-A exposure. The estimates were made using 30 years of solar radiation data for Duluth (MN, USA) and measurements of water-column UV-A transmittance in a PAH-contaminated field site. Medaka embryo failure was strongly related to tissue PAH concentration and UV-A exposure. The LD50 was estimated to be 12.64 J/cm2/ microg fluoranthene/g egg wet weight; the 95% confidence interval was 8.46 to 19.7 J/cm2/microg fluoranthene/g egg wet weight. Embryo failures were characterized by undifferentiated cell proliferation that occurred very early in development. No partial effects or embryo/larval malformations were observed. Estimates of the depth at which the LD50 would be exceeded in the contaminated field site ranged from 10.7 cm (clear-sky conditions and lowest attenuation) to 0.0 cm (cloudy conditions and highest attenuation). Similar calculations were done using water-column attenuation estimates from 12 sites across the Great Lakes (USA). For these, the depths at which the LD50 would be exceeded ranged from 0.00 to 271.6 cm under the conditions described above. These results suggest that PAH phototoxicity may be a risk factor in specific contaminated sites, and they provide a framework for assessing that risk.


Subject(s)
Fluorenes/radiation effects , Fluorenes/toxicity , Oryzias/embryology , Ultraviolet Rays , Animals , Embryo, Nonmammalian , Lethal Dose 50 , Risk Assessment , Water Pollutants, Chemical/radiation effects , Water Pollutants, Chemical/toxicity , Zygote/drug effects , Zygote/radiation effects
3.
Environ Sci Technol ; 38(23): 6256-62, 2004 Dec 01.
Article in English | MEDLINE | ID: mdl-15597879

ABSTRACT

Biologically directed fractionation techniques are a fundamental tool for identifying the cause of toxicity in environmental samples, but few are available for studying mixtures of organic chemicals in aquatic sediments. This paper describes a method for extracting organic chemicals from sediments and then re-introducing them into water column toxicity tests in a way that mimics, at least in part, the partitioning processes that govern bioavailability in sediment. This involves transferring solvent extracts of sediment into triolein and then placing the mixture inside low-density polyethylene dialysis tubing in a configuration similar to semipermeable membrane devices (SPMDs) used for environmental monitoring. For four model compounds, SPMDs were shown to effectively maintain water column exposure in static systems for 10-14 d, with partition coefficients similar to K(OW). Toxicity tests indicated that the SPMDs were compatible with four of five freshwater organisms tested and could be used to measure both lethal and sublethal end points. An example application showed good correspondence between organism responses in intactsediment and extracts in SPMDsfor both field-collected and spiked sediments. The SPMD-based method offers a simple, flexible test design, amenable to several different test organisms, and the ability to work with complex mixtures of contaminants while maintaining partitioning behavior similar to that within intact sediments.


Subject(s)
Dieldrin/toxicity , Environmental Monitoring/methods , Geologic Sediments/chemistry , Organic Chemicals/analysis , Water Pollutants, Chemical/analysis , Animals , Biological Availability , Biomass , Environmental Monitoring/instrumentation , Fresh Water/chemistry , Membranes, Artificial , Organic Chemicals/pharmacokinetics , Organic Chemicals/toxicity , Toxicity Tests , Triolein/chemistry , Water Pollutants, Chemical/pharmacokinetics , Water Pollutants, Chemical/toxicity
4.
Environ Toxicol Chem ; 22(11): 2752-60, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14587918

ABSTRACT

The risk of photoactivated PAH toxicity in contaminated aquatic systems has not been well characterized. To document risk, amphipods (Gammarus spp.) were collected from two polycyclic aromatic hydrocarbon (PAH)-contaminated sites in the lower St. Louis River and Duluth Harbor, USA (Hog Island and USX) as well as a reference site (Chipmunk Cove) and were exposed in two separate, replicate tests to controlled intensities of solar radiation for 3 d. Contaminated site organisms died significantly faster compared to control site organisms. In all tests, mortality was strongly related to ultraviolet-A (UV-A; 320-400 nm) dose. Ultraviolet-B (280-320 nm) radiation did not increase mortality. To compare susceptibility among populations, regressions of arcsine-transformed, proportionate mortality versus UV dose were completed for each, and the slopes were statistically compared. Response slopes for the two contaminated site populations were both significantly greater than the reference site population (p = 0.0001 for test 1; p = 0.0002 for test 2). These results indicate that organisms residing in PAH-contaminated environments can accumulate PAH concentrations sufficient to be at risk for photoactivated toxicity. Although amphipods are not typically at risk of PAH-photoactivated toxicity because they are largely protected from exposure to sunlight, they are representative surrogates for species that may be similarly protected at some life stages (and thus able to accumulate significant PAH tissue concentrations) but not at others.


Subject(s)
Amphipoda , Environmental Exposure , Polycyclic Aromatic Hydrocarbons/pharmacokinetics , Polycyclic Aromatic Hydrocarbons/toxicity , Water Pollutants, Chemical/pharmacokinetics , Water Pollutants, Chemical/toxicity , Animals , Photochemistry , Polycyclic Aromatic Hydrocarbons/chemistry , Risk Assessment , Sunlight , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...