Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Mater Horiz ; 9(5): 1468-1478, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35244665

ABSTRACT

Self-powered tactile module-based electronic skins incorporating triboelectric nanogenerator (TENG) appears to be a worthwhile alternative for smart monitoring devices in terms of sustainable energy harvesting. On top of it, ultra-stretchability and detection sensitivity are imperative to mimic human skin. We report, for the first time, a metal-free single electrode TENG-based self-powered tactile module comprising of microwells (diameters 2 µm and 200 nm, respectively) on fluoroelastomer (FKM) and laser induced graphene (LIG) electrodes by in situ simultaneous transfer printing method. Direct imprinting of both the active surface and LIG electrode on a tribonegative FKM has not been attempted before. The resulting triboelectric module exhibits impressive maximum power density of 715 mW m-2, open circuit voltage and maximum output current of 148 V and 9.6 µA respectively for a matching load of 10 MΩ. Moreover, the TENG unit is very robust and sustained high electrical output even at 200% elongation. A dielectric-to-dielectric TENG-based tactile sensor is also constructed using FKM (negative tribolayer) and TiO2 deposited micropatterned PDMS. Resulting tribo-sensor demonstrates remarkable motion and force sensitivity. It can also distinguish subtle human contact force that can simulate skin with high sensitivity and therefore, can be utilized for potential e-skin/bionic skin applications in health and human-machine interfaces.


Subject(s)
Nanotechnology , Wearable Electronic Devices , Elasticity , Electrodes , Humans , Printing, Three-Dimensional
2.
Polymers (Basel) ; 13(21)2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34771288

ABSTRACT

The deformation behavior of semi-crystalline polymers is strongly dependent on the morphology formed during processing. In this study, in-situ synchrotron X-ray was firstly used to identify the morphological distributions of injection-molded isotactic polypropylene (iPP) with different concentrations of ß-nucleating agent. It was found that under relatively high concentration of ß-nucleating agent (i.e., ≥0.03 wt.%), the outer region (skin and shear region) of the iPP was dominated by mainly highly oriented α-phase as well as certain amount γ-phase, while the core region was rich in ß-crystals with little if any orientation. The addition of the ß-nucleating agent was beneficial for the formation of lamellae with large lamellar stacking distance in the shear layer. Then the synchrotron X-ray was applied to study the structure variation of those morphology-identified samples under tensile deformation. It was found that voids and cavities along the stretching direction existed in the deformed iPP samples and their volume increased with increasing concentration of ß-nucleating agent. The increased volume of void and cavity was associated with the ß to α phase transition, which mainly occurred at the core region. In addition, upon stretching crystalline fragmentation and rearrangement took place following the formation of thinner lamellae.

3.
ACS Appl Mater Interfaces ; 13(13): 15610-15620, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33780228

ABSTRACT

Functional elastomers with incredible toughness and stretchability are indispensable for applications in soft robotics and wearable electronics. Furthermore, coupled with excellent electrical and thermal properties, these materials are at the forefront of recent efforts toward widespread use in cutting-edge electronics and devices. Herein, we introduce a highly deformable eutectic-GaIn liquid metal alloy-embedded natural rubber (NR) architecture employing, for the first time, industrially viable solid-state mixing and vulcanization. Standard methods of rubber processing and vulcanization allow us to fragment and disperse liquid metals into submicron-sized droplets in cross-linked NR without compromising the elastic properties of the base matrix. In addition to substantial boosts in mechanical (strain at failure of up to ∼650%) and elastic (negligible hysteresis loss) performances, the tearing energy of the composite was enhanced up to 6 times, and a fourfold reduction in the crack growth rate was achieved over a control vulcanizate. Moreover, we demonstrate improved thermal conductivity and dielectric properties for the resulting composites. Therefore, this work provides a facile and scalable pathway to develop liquid metal-embedded soft elastomeric composites that could be instrumental toward potential applications in soft-matter engineering.

4.
Polymers (Basel) ; 12(11)2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33207587

ABSTRACT

Dielectric elastomers (DEs) represent a class of electroactive polymers that deform due to electrostatic attraction between oppositely charged electrodes under a varying electric field. Over the last couple of decades, DEs have garnered considerable attention due to their much-coveted actuation properties. As far as the precise measurement systems are concerned, however, there is no standard instrument or interface to quantify various related parameters, e.g., actuation stress, strain, voltage and creeping etc. In this communication, we present an in-depth study of dielectric actuation behavior of dielectric rubbers by the state-of-the-art "Dresden Smart Rubber Analyzer" (DSRA), designed and developed in-house. The instrument allowed us to elucidate various factors that could influence the output efficiency of the DEs. Herein, several non-conventional DEs such as hydrogenated nitrile rubber, nitrile rubber with different acrylonitrile contents, were employed as an electro-active matrix. The effect of viscoelastic creeping on the prestrain, molecular architecture of the matrices, e.g., nitrile content of nitrile-butadiene rubber (NBR) etc., are also discussed in detail.

5.
Heliyon ; 6(8): e04659, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32904204

ABSTRACT

The major controlling factors that determine the various mechanical properties of an elastomer system are type of chemical crosslinking and crosslink density of the polymer network. In this study, a catalytic amount of acrylonitrile butadiene copolymer (NBR) was used as a co-accelerator for the curing of polybutadiene (BR) elastomer. After the addition of this copolymer along with other conventional sulphur ingredients in polybutadiene compounds, a clear and distinct effect on the curing and other physical characteristics was noticed. The crosslinking density of BR was increased, as evidenced by rheometric properties, solid-state NMR and swelling studies. The vulcanization kinetics study revealed a substantial lowering of the activation energy of the sulphur crosslinking process when acrylonitrile butadiene copolymer was used in the formulation. The compounds were also prepared in the presence of carbon black and silica, and it was found that in the carbon black filled system the catalytic effect of the NBR was eminent. The effect was not only reflected in the mechanical performance but also the low-temperature crystallization behavior of BR systems was altered.

6.
Materials (Basel) ; 13(17)2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32825486

ABSTRACT

In this paper, we report on the use of amorphous lignin, a waste by-product of the paper industry, for the production of high performance carbon fibers (CF) as precursor with improved thermal stability and thermo-mechanical properties. The precursor was prepared by blending of lignin with polyacrylonitrile (PAN), which was previously dissolved in an ionic liquid. The fibers thus produced offered very high thermal stability as compared with the fiber consisting of pure PAN. The molecular compatibility, miscibility, and thermal stability of the system were studied by means of shear rheological measurements. The achieved mechanical properties were found to be related to the temperature-dependent relaxation time (consistence parameter) of the spinning dope and the diffusion kinetics of the ionic liquids from the fibers into the coagulation bath. Furthermore, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical tests (DMA) were utilized to understand in-depth the thermal and the stabilization kinetics of the developed fibers and the impact of lignin on the stabilization process of the fibers. Low molecular weight lignin increased the thermally induced physical shrinkage, suggesting disturbing effects on the semi-crystalline domains of the PAN matrix, and suppressed the chemically induced shrinkage of the fibers. The knowledge gained throughout the present paper allows summarizing a novel avenue to develop lignin-based CF designed with adjusted thermal stability.

7.
Materials (Basel) ; 13(2)2020 Jan 07.
Article in English | MEDLINE | ID: mdl-31936164

ABSTRACT

The article focuses on comparing the friction, abrasion, and crack growth behavior of two different kinds of silica-filled tire tread compounds loaded with (a) in-situ generated alkoxide silica and (b) commercial precipitated silica-filled compounds. The rubber matrix consists of solution styrene butadiene rubber polymers (SSBR). The in-situ generated particles are entirely different in filler morphology, i.e., in terms of size and physical structure, when compared to the precipitated silica. However, both types of the silicas were identified as amorphous in nature. Influence of filler morphology and surface modification of silica on the end performances of the rubbers like dynamic friction, abrasion index, and fatigue crack propagation were investigated. Compared to precipitated silica composites, in-situ derived silica composites offer better abrasion behavior and improved crack propagation with and without admixture of silane coupling agents. Silane modification, particle morphology, and crosslink density were identified as further vital parameters influencing the investigated rubber properties.

8.
Polymers (Basel) ; 12(1)2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31936848

ABSTRACT

We describe an approach for modeling the filler network formation kinetics of particle-reinforced rubbery polymers-commonly called filler flocculation-that was developed by employing parallels between deformation effects in jammed particle systems and the influence of temperature on glass-forming materials. Experimental dynamic viscosity results were obtained concerning the strain-induced particle network breakdown and subsequent time-dependent reformation behavior for uncross-linked elastomers reinforced with carbon black and silica nanoparticles. Using a relaxation time function that depends on both actual dynamic strain amplitude and fictive (structural) strain, the model effectively represented the experimental data for three different levels of dynamic strain down-jump with a single set of parameters. This fictive strain model for filler networking is analogous to the established Tool-Narayanaswamy-Moynihan model for structural relaxation (physical aging) of nonequilibrium glasses. Compared to carbon black, precipitated silica particles without silane surface modification exhibited a greater overall extent of filler networking and showed more self-limiting behavior in terms of network formation kinetics in filled ethylene-propylene-diene rubber (EPDM). The EPDM compounds with silica or carbon black filler were stable during the dynamic shearing and recovery experiments at 160 °C, whereas irreversible dynamic modulus increases were noted when the polymer matrix was styrene-butadiene rubber (SBR), presumably due to branching/cross-linking of SBR in the rheometer. Care must be taken when measuring and interpreting the time-dependent filler networking in unsaturated elastomers at high temperatures.

9.
Polymers (Basel) ; 13(1)2020 Dec 29.
Article in English | MEDLINE | ID: mdl-33383639

ABSTRACT

The chemical modification (namely the epoxidation) of a star shaped block copolymer (BCP) based on polystyrene (PS) and polybutadiene (PB) and its effect on structural and mechanical properties of the polymer were investigated. Epoxidation degrees of 37 mol%, 58 mol%, and 82 mol% were achieved by the reaction of the copolymer with meta-chloroperoxy benzoic acid (m-CPBA) under controlled conditions. The BCP structure was found to change from lamellae-like to mixed-type morphologies for intermediate epoxidation level while leading to quite ordered cylindrical structures for the higher level of chemical modification. As a consequence, the glass transition temperature (Tg) of the soft PB component of the BCP shifted towards significantly higher temperature. A clear increase in tensile modulus and tensile strength with a moderate decrease in elongation at break was observed. The epoxidized BCPs are suitable as reactive templates for the fabrication of nanostructured thermosetting resins.

10.
Int J Mol Sci ; 20(18)2019 Sep 19.
Article in English | MEDLINE | ID: mdl-31546928

ABSTRACT

A rupture of the anterior cruciate ligament (ACL) is the most common knee ligament injury. Current applied reconstruction methods have limitations in terms of graft availability and mechanical properties. A new approach could be the use of a tissue engineering construct that temporarily reflects the mechanical properties of native ligament tissues and acts as a carrier structure for cell seeding. In this study, embroidered scaffolds composed of polylactic acid (PLA) and poly(lactic-co-ε-caprolactone) (P(LA-CL)) threads were tested mechanically for their viscoelastic behavior under in vitro degradation. The relaxation behavior of both scaffold types (moco: mono-component scaffold made of PLA threads, bico: bi-component scaffold made of PLA and P(LA-CL) threads) was comparable to native lapine ACL. Most of the lapine ACL cells survived 32 days of cell culture and grew along the fibers. Cell vitality was comparable for moco and bico scaffolds. Lapine ACL cells were able to adhere to the polymer surfaces and spread along the threads throughout the scaffold. The mechanical behavior of degrading matrices with and without cells showed no significant differences. These results demonstrate the potential of embroidered scaffolds as an ACL tissue engineering approach.


Subject(s)
Anterior Cruciate Ligament/metabolism , Polyesters/chemistry , Tissue Engineering , Tissue Scaffolds/chemistry , Animals , Anterior Cruciate Ligament/pathology , Anterior Cruciate Ligament Injuries/metabolism , Anterior Cruciate Ligament Injuries/pathology , Anterior Cruciate Ligament Injuries/therapy , Cells, Cultured , Elasticity , Rabbits , Viscosity
11.
J Phys Chem B ; 123(24): 5168-5175, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31125234

ABSTRACT

A new biomimetic stimuli-responsive adaptive elastomeric material, whose mechanical properties are altered by a water treatment is reported in this paper. This material is a calcium sulphate (CaSO4) filled composite with an epoxidized natural rubber (ENR) matrix. By exploiting various phase transformation processes that arise when CaSO4 is hydrated, several different crystal structures of CaSO4· xH2O can be developed in the cross-linked ENR matrix. Significant improvements in the mechanical and thermal properties are then observed in the water-treated composites. When compared with the untreated sample, there is approximately 100% increase in the dynamic modulus. The thermal stability of the composites is also improved by increasing the maximum degradation rate temperature by about 20 °C. This change in behavior results from an in situ development of hydrated crystal structures of the nanosized CaSO4 particles in the ENR matrix, which has been verified using Raman spectroscopy, transmission electron microscopy, atomic force microscopy, and X-ray scattering. This work provides a promising and relatively simple pathway for the development of next generation of mechanically adaptive elastomeric materials by an eco-friendly route, which may eventually also be developed into an innovative biodegradable and biocompatible smart polymeric material.

12.
Soft Matter ; 15(18): 3796-3806, 2019 May 08.
Article in English | MEDLINE | ID: mdl-30990483

ABSTRACT

We use X-ray photon correlation spectroscopy (XPCS) to investigate the dynamics of a stretched elastomer by means of probe particles. The particles dispersed in the elastomer were carbon black or silica aggregates classically used for elastomer reinforcement but their volume fraction is very low (φ < 10-2). We show that their dynamics is slower in the direction of the tensile strain than in the perpendicular one. For hydroxylated silica which is poorly wetted by the elastomer, there is no anisotropy. Two-time correlation functions confirm anisotropic dynamics and suggest dynamical heterogeneity already expected from the q-1 behavior of the relaxation times. The height χ* of the peak of the dynamical susceptibility, determined by the normalized variance of the instantaneous correlation function, is larger in the direction parallel to the strain than in the perpendicular one. It also appears that its q dependence changes with the morphology of the probe particle. Therefore, the heterogeneous dynamic probed by the particles is not related only to that of the strained elastomer matrix. In fact, it results from modification of the dynamics of the polymer chains near the surface of the particles and within the aggregate porosity (bound polymer). It is concluded that XPCS is a powerful method for investigating the dynamics, at a given strain, of the bound polymer-particle units which are responsible, at large volume fractions, for the reinforcement.

13.
Materials (Basel) ; 12(3)2019 Feb 12.
Article in English | MEDLINE | ID: mdl-30759815

ABSTRACT

The work aims at establishing the optimum conditions for dual thermal and electron beam curing of thermosetting systems modified by styrene/butadiene (SB)-based triblock copolymers in order to develop transparent and toughened materials. The work also investigates the effects of curing procedures on the ultimate phase morphology and mechanical properties of these thermoset⁻SB copolymer blends. It was found that at least 46 mol% of the epoxidation degree of the SB copolymer was needed to enable the miscibility of the modified block copolymer into the epoxy resin. Hence, an electron beam curing dose of ~50 kGy was needed to ensure the formation of micro- and nanostructured transparent blends. The micro- and nanophase-separated thermosets obtained were analyzed by optical as well as scanning and transmission electron microscopy. The mechanical properties of the blends were enhanced as shown by their impact strengths, indentation, hardness, and fracture toughness analyses, whereby the toughness values were found to mainly depend on the dose. Thus, we have developed a new route for designing dual-cured toughened micro- and nanostructured transparent epoxy thermosets with enhanced fracture toughness.

14.
Materials (Basel) ; 11(11)2018 Nov 02.
Article in English | MEDLINE | ID: mdl-30400253

ABSTRACT

Specific physical and reactive compatibilization strategies are applied to enhance the interfacial adhesion and mechanical properties of heterogeneous polymer blends. Another pertinent challenge is the need of energy-intensive blending methods to blend high-tech polymers such as the blending of a pre-made hard polyurethane (-urea) with rubbers. We developed and investigated a reactive blending method to prepare the outstanding blends based on polyurethane-urea and rubbers at a low blending temperature and without any interfacial compatibilizing agent. In this study, the polyurethane-urea (PUU) was synthesized via the methylene diphenyl diisocyanate end-capped prepolymer and m-phenylene diamine based precursor route during blending at 100 °C with polar (carboxylated nitrile rubber (XNBR) and chloroprene rubber (CR)) and non-polar (natural rubber (NR), styrene butadiene rubber (sSBR), and ethylene propylene butadiene rubber (EPDM)) rubbers. We found that the in situ PUU reinforces the tensile response at low strain region and the dynamic-mechanical response up to 150 °C in the case of all used rubbers. Scanning electron microscopy reveals a stronger rubber/PUU interface, which promotes an effective stress transfer between the blend phases. Furthermore, energy filtered transmission electron microscopy (EFTEM) based elemental carbon map identifies an interphase region along the interface between the nitrile rubber and in situ PUU phases of this exemplary blend type.

15.
J Chem Phys ; 148(24): 244901, 2018 Jun 28.
Article in English | MEDLINE | ID: mdl-29960366

ABSTRACT

In this paper, we study a system of entangled chains that bear reversible cross-links in a melt state. The cross-links are tethered uniformly on the backbone of each chain. A slip-link type model for the system is presented and solved for the relaxation modulus. The effects of entanglements and reversible cross-linkers are modelled as a discrete form of constraints that influence the motion of the primitive path. In contrast to a non-associating entangled system, the model calculations demonstrate that the elastic modulus has a much higher first plateau and a delayed terminal relaxation. These effects are attributed to the evolution of the entangled chains, as influenced by tethered reversible linkers. The model is solved for the case when the linker survival time τs is greater than the entanglement time τe, but less than the Rouse time τR.

16.
Materials (Basel) ; 11(7)2018 Jun 25.
Article in English | MEDLINE | ID: mdl-29941808

ABSTRACT

An electromechanical response behavior is realized by nanostructuring the glass fiber interphase with different highly electrically conductive carbon allotropes like carbon nanotubes (CNT), graphene nanoplatelets (GNP), or conductive carbon black (CB). The operational capability of these multifunctional glass fibers for an online structural-health monitoring is demonstrated in endless glass fiber-reinforced polypropylene. The electromechanical response behavior, during a static or dynamic three-point bending test of various carbon modifications, shows qualitative differences in the signal quality and sensitivity due to the different aspect ratios of the nanoparticles and the associated electrically conductive network densities in the interphase. Depending on the embedding position within the glass fiber-reinforced composite compression, shear and tension loadings of the fibers can be distinguished by different characteristics of the corresponding electrical signal. The occurrence of irreversible signal changes during the dynamic loading can be attributed to filler reorientation processes caused by polymer creeping or by destruction of electrically conductive paths by cracks in the glass fiber interphase.

17.
ACS Appl Mater Interfaces ; 10(18): 16148-16159, 2018 May 09.
Article in English | MEDLINE | ID: mdl-29676569

ABSTRACT

A mechanically adaptable elastomer composite is prepared with reversible soft-stiff properties that can be easily controlled. By the exploitation of different morphological structures of calcium sulfate, which acts as the active filler in a soft elastomer matrix, the magnitude of filler reinforcement can be reversibly altered, which will be reflected in changes of the final stiffness of the material. The higher stiffness, in other words, the higher modulus of the composites, is realized by the in situ development of fine nanostructured calcium sulfate dihydrate crystals, which are formed during exposure to water and, further, these highly reinforcing crystals can be transformed to a nonreinforcing hemihydrate mesocrystalline structure by simply heating the system in a controlled way. The Young's modulus of the developed material can be reversibly altered from ∼6 to ∼17 MPa, and the dynamic stiffness (storage modulus at room temperature and 10 Hz frequency) alters its value in the order of 1000%. As the transformation is related to the presence of water molecules in the crystallites, a hydrophilic elastomer matrix was selected, which is a blend of two hydrophilic polymers, namely, epichlorohydrin-ethylene oxide-allyl glycidyl ether terpolymer and a terpolymer of ethylene oxide-propylene oxide-allyl glycidyl ether. For the first time, this method also provides a route to regulate the morphology and structure of calcium sulfate nanocrystals in a confined ambient of cross-linked polymer chains.

18.
J Phys Chem B ; 122(6): 2010-2022, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29350918

ABSTRACT

A sol-gel transformation of liquid silica precursor to solid silica particles was carried out in a one-pot synthesis way, where a solution of styrene butadiene elastomer was present. The composites, thus produced, offered remarkable improvements of mechanical and dynamic mechanical performances compared to precipitated silica. The morphological analysis reveals that the alkoxy-based silica particles resemble a raspberry structure when the synthesis of the silica was carried out in the presence of polymer molecules and represent a much more open silica-network structure. However, in the absence of the polymer, the morphology of the silica particles is found to be different. It is envisaged that the special morphology of the in situ synthesized silica particles contributes to the superior reinforcement effects, which are associated with a strong silica-rubber interaction by rubber chains trapped inside the raspberry-like silica aggregates. Therefore, the interfaces are characterized in detail by low-field solid-state 1H NMR spectroscopy, 29Si solid-state NMR spectroscopy, and energy-dispersive X-ray spectroscopy. Low-field 1H NMR-based double-quantum experiments provide a quantitative information about the cross-link density of the silica-filled rubber composites and about the influence of silane coupling agent on the chemical cross-link density of the network and correlates well with equilibrium swelling measurements. The special microstructure of the alkoxy-based silica was found to be associated with the interaction between alkoxy-based silica and rubber chains as a consequence of particle growth in the presence of rubber chains.

19.
Polymers (Basel) ; 10(1)2018 Jan 19.
Article in English | MEDLINE | ID: mdl-30966129

ABSTRACT

In this work, we report about the mechanical relaxation characteristics of an intrinsically self-healable imidazole modified commercial rubber. This kind of self-healing rubber was prepared by melt mixing of 1-butyl imidazole with bromo-butyl rubber (bromine modified isoprene-isobutylene copolymer, BIIR). By this melt mixing process, the reactive allylic bromine of bromo-butyl rubber was converted into imidazole bromide salt. The resulting development of an ionic character to the polymer backbone leads to an ionic association of the groups which ultimately results to the formation of a network structure of the rubber chains. The modified BIIR thus behaves like a robust crosslinked rubber and shows unusual self-healing properties. The non-covalent reversible network has been studied in detail with respect to stress relaxation experiments, scanning electron microscopic and X-ray scattering.

20.
RSC Adv ; 8(47): 26793-26803, 2018 Jul 24.
Article in English | MEDLINE | ID: mdl-35541047

ABSTRACT

Rubber composites were prepared by mixing bromobutyl rubber (BIIR) with silica particles in the presence of 1-butylimidazole. In addition to pristine (precipitated) silica, silanized particles with aliphatic or imidazolium functional groups, respectively, were used as filler. The silanization was carried out either separately or in situ during compounding. The silanized particles were characterized by TGA, 1H-29Si cross polarization (CP)/MAS NMR, and Zeta potential measurements. During compounding, the bromine groups of BIIR were converted with 1-butylimidazole to ionic imidazolium groups which formed a dynamic network by ionic association. Based on DMA temperature and strain sweep measurements as well as cyclic tensile tests and stress-strain measurements it could be concluded that interactions between the ionic groups and interactions with the functional groups of the silica particles strongly influence the mechanical and viscoelastic behavior of the composites. A particularly pronounced reinforcing effect was observed for the composite with pristine silica, which was attributed to acid-base interactions between the silanol and imidazolium groups. In composites with alkyl or imidazolium functionalized silica particles, the interactions between the filler and the rubber matrix form dynamic networks with pronounced self-healing behavior and excellent tensile strength values of up to 19 MPa. This new approach in utilizing filler-matrix interactions in the formation of dynamic networks opens up new avenues in designing new kinds of particle-reinforced self-healing elastomeric materials with high technological relevance.

SELECTION OF CITATIONS
SEARCH DETAIL
...