Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Cell Cardiol ; 173: 25-29, 2022 12.
Article in English | MEDLINE | ID: mdl-36122767

ABSTRACT

T-cells contribute to pathophysiological processes in myocardial diseases, including myocardial infarction (MI) and heart failure (HF). Antigen-specificity is a hallmark of T-cell responses but the cardiac antigens that trigger heart-directed T-cell responses in patients have not yet been uncovered, thus posing a roadblock to translation. In the present exploratory study, we identified a peptide fragment of the beta-1 adrenergic receptor (ADRB1) that elicits CD4+ T-cell responses after myocardial infarction in patients with a defined HLA haplotype. Our observations may advance the development of tools to monitor other antigen-specific immune responses in patients.


Subject(s)
CD4-Positive T-Lymphocytes , Myocardial Infarction , Humans , Epitopes , Heart
2.
Cardiovasc Res ; 117(13): 2664-2676, 2021 11 22.
Article in English | MEDLINE | ID: mdl-34048536

ABSTRACT

AIMS: Recent studies have revealed that B cells and antibodies can influence inflammation and remodelling following a myocardial infarction (MI) and culminating in heart failure-but the mechanisms underlying these observations remain elusive. We therefore conducted in mice a deep phenotyping of the post-MI B-cell responses in infarcted hearts and mediastinal lymph nodes, which drain the myocardium. Thereby, we sought to dissect the mechanisms controlling B-cell mobilization and activity in situ. METHODS AND RESULTS: Histological, flow cytometry, and single-cell RNA-sequencing (scRNA-seq) analyses revealed a rapid accumulation of diverse B-cell subsets in infarcted murine hearts, paralleled by mild clonal expansion of germinal centre B cells in the mediastinal lymph nodes. The repertoire of cardiac B cells was largely polyclonal and showed no sign of antigen-driven clonal expansion. Instead, it included a distinct subset exclusively found in the heart, herein termed 'heart-associated B cells' (hB) that expressed high levels of Cd69 as an activation marker, C-C-chemokine receptor type 7 (Ccr7), CXC-chemokine receptor type 5 (Cxcr5), and transforming growth factor beta 1 (Tgfb1). This distinct signature was not shared with any other cell population in the healing myocardium. Moreover, we detected a myocardial gradient of CXC-motif chemokine ligand 13 (CXCL13, the ligand of CXCR5) on Days 1 and 5 post-MI. When compared with wild-type controls, mice treated with a neutralizing CXCL13-specific antibody as well as CXCR5-deficient mice showed reduced post-MI infiltration of B cells and reduced local Tgfb1 expression but no differences in contractile function nor myocardial morphology were observed between groups. CONCLUSION: Our study reveals that polyclonal B cells showing no sign of antigen-specificity readily infiltrate the heart after MI via the CXCL13-CXCR5 axis and contribute to local TGF-ß1 production. The local B-cell responses are paralleled by mild antigen-driven germinal centre reactions in the mediastinal lymph nodes that might ultimately lead to the production of specific antibodies.


Subject(s)
B-Lymphocyte Subsets/metabolism , Cell Proliferation , Chemokine CXCL13/metabolism , Chemotaxis, Leukocyte , Lymph Nodes/metabolism , Lymphocyte Activation , Myocardial Infarction/metabolism , Myocardium/metabolism , Receptors, CXCR5/metabolism , Animals , B-Lymphocyte Subsets/immunology , Chemokine CXCL13/genetics , Chemokines/genetics , Chemokines/metabolism , Disease Models, Animal , Immunoglobulins/metabolism , Lymph Nodes/immunology , Male , Mice, Inbred C57BL , Myocardial Infarction/genetics , Myocardial Infarction/immunology , Myocardial Infarction/pathology , Myocardium/immunology , Myocardium/pathology , Phenotype , RNA-Seq , Receptors, CXCR5/genetics , Signal Transduction , Single-Cell Analysis , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism
3.
Front Immunol ; 12: 584538, 2021.
Article in English | MEDLINE | ID: mdl-33679735

ABSTRACT

The cardiovascular and immune systems undergo profound and intertwined alterations with aging. Recent studies have reported that an accumulation of memory and terminally differentiated T cells in elderly subjects can fuel myocardial aging and boost the progression of heart diseases. Nevertheless, it remains unclear whether the immunological senescence profile is sufficient to cause age-related cardiac deterioration or merely acts as an amplifier of previous tissue-intrinsic damage. Herein, we sought to decompose the causality in this cardio-immune crosstalk by studying young mice harboring a senescent-like expanded CD4+ T cell compartment. Thus, immunodeficient NSG-DR1 mice expressing HLA-DRB1*01:01 were transplanted with human CD4+ T cells purified from matching donors that rapidly engrafted and expanded in the recipients without causing xenograft reactions. In the donor subjects, the CD4+ T cell compartment was primarily composed of naïve cells defined as CCR7+CD45RO-. However, when transplanted into young lymphocyte-deficient mice, CD4+ T cells underwent homeostatic expansion, upregulated expression of PD-1 receptor and strongly shifted towards effector/memory (CCR7- CD45RO+) and terminally-differentiated phenotypes (CCR7-CD45RO-), as typically seen in elderly. Differentiated CD4+ T cells also infiltrated the myocardium of recipient mice at comparable levels to what is observed during physiological aging. In addition, young mice harboring an expanded CD4+ T cell compartment showed increased numbers of infiltrating monocytes, macrophages and dendritic cells in the heart. Bulk mRNA sequencing analyses further confirmed that expanding T-cells promote myocardial inflammaging, marked by a distinct age-related transcriptomic signature. Altogether, these data indicate that exaggerated CD4+ T-cell expansion and differentiation, a hallmark of the aging immune system, is sufficient to promote myocardial alterations compatible with inflammaging in juvenile healthy mice.


Subject(s)
Aging/immunology , CD4-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Heart Diseases/immunology , Immunologic Memory/immunology , Myocardium/immunology , Aging/genetics , Animals , CD4-Positive T-Lymphocytes/metabolism , Cell Differentiation/genetics , Cells, Cultured , Gene Expression/immunology , HLA-DRB1 Chains/genetics , HLA-DRB1 Chains/immunology , HLA-DRB1 Chains/metabolism , Heart Diseases/genetics , Heart Diseases/metabolism , Humans , Immunologic Memory/genetics , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Mice, Transgenic , RNA-Seq/methods , Transplantation, Heterologous
4.
Am J Physiol Heart Circ Physiol ; 315(5): H1358-H1367, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30095974

ABSTRACT

Heart-specific antibodies have been widely associated with myocardial infarction (MI). However, it remains unclear whether autoantibodies mediate disease progression or are a byproduct of cardiac injury. To disambiguate the role of immunoglobulins in MI, we characterized the development of ischemic heart failure in agammaglobulinemic mice (AID-/-µS-/-). Although these animals can produce functional B cells, they cannot synthesize secretory IgM (µS-/-) or perform Ig class switching (AID-/-), leading to complete antibody deficiency. Agammaglobulinemia did not affect overall post-MI survival but resulted in a significant reduction in infarct size. Echocardiographic analyses showed that, compared with wild-type infarcted control mice, AID-/-µS-/- mice exhibited improved cardiac function and reduced remodeling on day 56 post-MI. These differences remained significant even after animals with matched infarct sizes were compared. Infarcted AID-/-µS-/- mice also showed reduced myocardial expression levels of transcripts known to promote adverse remodeling, such as matrix metalloproteinase-9, collagen type I a1, collagen type III a1, and IL-6. An unbiased screening of the heart reactivity potential in the plasma of wild-type MI animals revealed the presence of antibodies that target the myocardial scar and collagenase-sensitive epitopes. Moreover, we found that IgG accumulated within the scar tissues of infarcted mice and remained in close proximity with cells expressing Fcγ receptors (CD16/32), suggesting the existence of an in situ IgG-Fcγ receptor axis. Collectively, our study results confirm that antibodies contribute to ischemic heart failure progression and provide novel insights into the mechanisms underlying this phenomenon. NEW & NOTEWORTHY Our study sheds some light on the long-standing debate over the relevance of autoantibodies in heart failure and might stimulate future research in the field. The observation of extracellular matrix-specific antibodies and the detection of Fcγ receptor-expressing cells within the scar provide novel insights into the mechanisms by which antibodies may contribute to adverse remodeling.


Subject(s)
Agammaglobulinemia/immunology , Autoantibodies/immunology , Heart Failure/prevention & control , Immunoglobulin Class Switching , Immunoglobulin M/immunology , Myocardial Infarction/immunology , Myocarditis/prevention & control , Myocardium/immunology , Agammaglobulinemia/complications , Agammaglobulinemia/genetics , Agammaglobulinemia/metabolism , Animals , Autoantibodies/metabolism , Disease Models, Animal , Extracellular Matrix/immunology , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Fibrosis , Heart Failure/immunology , Heart Failure/metabolism , Heart Failure/pathology , Immunoglobulin Class Switching/genetics , Immunoglobulin M/genetics , Immunoglobulin M/metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic , Myocardial Infarction/complications , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocarditis/immunology , Myocarditis/metabolism , Myocarditis/pathology , Myocardium/metabolism , Myocardium/pathology , Receptors, IgG/immunology , Receptors, IgG/metabolism , Ventricular Function, Left , Ventricular Remodeling
SELECTION OF CITATIONS
SEARCH DETAIL
...