Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 374(6563): eabf3067, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34591613

ABSTRACT

A major goal of cancer research is to understand how mutations distributed across diverse genes affect common cellular systems, including multiprotein complexes and assemblies. Two challenges­how to comprehensively map such systems and how to identify which are under mutational selection­have hindered this understanding. Accordingly, we created a comprehensive map of cancer protein systems integrating both new and published multi-omic interaction data at multiple scales of analysis. We then developed a unified statistical model that pinpoints 395 specific systems under mutational selection across 13 cancer types. This map, called NeST (Nested Systems in Tumors), incorporates canonical processes and notable discoveries, including a PIK3CA-actomyosin complex that inhibits phosphatidylinositol 3-kinase signaling and recurrent mutations in collagen complexes that promote tumor proliferation. These systems can be used as clinical biomarkers and implicate a total of 548 genes in cancer evolution and progression. This work shows how disparate tumor mutations converge on protein assemblies at different scales.


Subject(s)
Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Protein Interaction Maps/genetics , Genes, Neoplasm , Humans , Mutation , Protein Interaction Mapping/methods
2.
Biomacromolecules ; 22(7): 3040-3048, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34129338

ABSTRACT

Progressive stiffening of the extracellular matrix (ECM) is observed in tissue development as well as in pathologies such as cancer, cardiovascular disease, and fibrotic disease. However, methods to recapitulate this phenomenon in vitro face critical limitations. Here, we present a poly(ethylene glycol)-based peptide-functionalized ECM-mimetic hydrogel platform capable of facile, user-controlled dynamic stiffening. This platform leverages supramolecular interactions between inverse-electron demand Diels-Alder tetrazine-norbornene click products (TNCP) to create pendant moieties that undergo non-covalent crosslinking, stiffening a pre-existing network formed via thiol-ene click chemistry over the course of 6 h. Pendant TNCP moieties have a concentration-dependent effect on gel stiffness while still being cytocompatible and permissive of cell-mediated gel degradation. The robustness of this approach as well as its simplicity and ease of translation give it broad potential utility.


Subject(s)
Hydrogels , Polyethylene Glycols , Biocompatible Materials , Click Chemistry , Extracellular Matrix
SELECTION OF CITATIONS
SEARCH DETAIL
...