Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 12423, 2024 05 30.
Article in English | MEDLINE | ID: mdl-38816478

ABSTRACT

Foraminifera are single-celled protists which are important mediators of the marine carbon cycle. In our study, we explored the potential impact of polystyrene (PS) microplastic particles on two symbiont-bearing large benthic foraminifera species-Heterostegina depressa and Amphistegina lobifera-over a period of three weeks, employing three different approaches: investigating (1) stable isotope (SI) incorporation-via 13C- and 15N-labelled substrates-of the foraminifera to assess their metabolic activity, (2) photosynthetic efficiency of the symbiotic diatoms using imaging PAM fluorometry, and (3) microscopic enumeration of accumulation of PS microplastic particles inside the foraminiferal test. The active feeder A. lobifera incorporated significantly more PS particles inside the cytoplasm than the non-feeding H. depressa, the latter accumulating the beads on the test surface. Photosynthetic area of the symbionts tended to decrease in the presence of microplastic particles in both species, suggesting that the foraminiferal host cells started to digest their diatom symbionts. Compared to the control, the presence of microplastic particles lead to reduced SI uptake in A. lobifera, which indicates inhibition of inorganic carbon and nitrogen assimilation. Competition for particulate food uptake was demonstrated between algae and microplastic particles of similar size. Based on our results, both species seem to be sensitive to microplastic pollution, with non-feeding H. depressa being more strongly affected.


Subject(s)
Coral Reefs , Foraminifera , Microplastics , Foraminifera/metabolism , Foraminifera/physiology , Microplastics/toxicity , Diatoms/metabolism , Diatoms/physiology , Photosynthesis/drug effects , Symbiosis , Polystyrenes
2.
Heliyon ; 10(6): e27229, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38496866

ABSTRACT

Foraminifera are protists primarily living in benthic marine and estuarine environments. We studied uptake of inorganic carbon (C) and nitrogen (N) of the photosymbiont-bearing benthic coral reef foraminifera Heterostegina depressa in the presence of heavy metals. Incubation experiments were accomplished with artificial seawater enriched with copper, iron, lead and zinc at two different concentration levels (10 and 100 fold enriched in contrast to the usual culture medium). Additionally, isotopically labelled 13C-sodium bicarbonate and 15N-ammonium chloride were added to trace their assimilation over time (1 d, 3 d, 5 d, 7 d). Pulse-amplified modulated fluorescence measurements were performed to measure the potential impacts of heavy metals on chlorophyll fluorescence of the photosymbiont. Increased levels of copper (430.5 µg Cu/l) exhibited the greatest toxicity, while for low levels no effect on the overall metabolism of the foraminifera and the fluorescence activity of the photosymbiont could be detected. Iron (III) increased the symbiont activity, independent of concentration applied (44.5 and 513.3 µg Fe/l), which indicates Fe-limitation of the algal symbiont. Lead enrichment showed no detectable effect even at high concentration. Low concentrations of zinc (35.1 µg Zn/l) promoted the metabolism of the foraminifera, while high concentrations (598.4 µg Zn/l) were toxic. At low levels, two metals (Fe and Zn) promoted symbiont activity, at high levels, iron still boosted photosynthesis, but Zn and Cu had a negative impact on the obligatory photosynthetic symbionts.

3.
Mar Pollut Bull ; 201: 116237, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38457881

ABSTRACT

Our laboratory study looked into how pesticides affect the foraminifera species Heterostegina depressa and their obligatory algal endosymbionts. We incubated the foraminifera separately with different types of pesticides at varying concentrations (1 %, 0.01 % and 0.0001 %); we included the insecticide Confidor© (active substance: imidacloprid), the fungicide Pronto©Plus (tebuconazole), and the herbicide Roundup© (glyphosate). Our evaluation focused on the symbiont's photosynthetically active area (PA), and the uptake of dissolved inorganic carbon (DIC) and nitrogen (nitrate) to determine the vitality of the foraminifera. Our findings showed that even the lowest doses of the fungicide and herbicide caused irreparable damage to the foraminifera and their symbionts. While the insecticide only deactivated the symbionts (PA = 0) at the highest concentration (1 %), the fungicide, and herbicide caused complete deactivation even at the lowest levels provided (0.0001 %). The fungicide had the strongest toxic effect on the foraminiferal host regarding reduced isotope uptake. In conclusion, all pesticides had a negative impact on the holosymbiont, with the host showing varying degrees of sensitivity towards different types of pesticides.


Subject(s)
Foraminifera , Fungicides, Industrial , Herbicides , Insecticides , Pesticides , Coral Reefs , Foraminifera/physiology , Pesticides/toxicity , Fungicides, Industrial/toxicity , Herbicides/toxicity
5.
Sci Rep ; 13(1): 8240, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37217641

ABSTRACT

We studied metabolic activity of the symbiont-bearing large benthic foraminifer Heterostegina depressa under different light conditions. Besides the overall photosynthetic performance of the photosymbionts estimated by means of variable fluorescence, the isotope uptake (13C and 15N) of the specimens (= holobionts) was measured. Heterostegina depressa was either incubated in darkness over a period of 15 days or exposed to an 16:8 h light:dark cycle mimicking natural light conditions. We found photosynthetic performance to be highly related to light supply. The photosymbionts, however, survived prolonged darkness and could be reactivated after 15 days of darkness. The same pattern was found in the isotope uptake of the holobionts. Based on these results, we propose that 13C-carbonate and 15N-nitrate assimilation is mainly controlled by the photosymbionts, whereas 15N-ammonium and 13C-glucose utilization is regulated by both, the symbiont and the host cells.


Subject(s)
Foraminifera , Foraminifera/metabolism , Photosynthesis , Isotopes/metabolism
6.
J Photochem Photobiol B ; 238: 112623, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36549082

ABSTRACT

Foraminifera are unicellular, marine organisms that occur worldwide. A very common species in the German Wadden Sea is Elphidium williamsoni. Some foraminifera (such as elphidia) are able to use kleptoplastidy, which allows them to incorporate chloroplasts from their algal food source into their own cell body. The experiments reported here are based on the fact that chlorophyll (a and c) can be detected in the intact cells with spectroscopic methods in the visible spectral range, which allows an indirect investigation of the presence of sequestered chloroplasts. Starving experiments of E. williamsoni in the light (24 h continuous) showed that the greatest decrease in chlorophyll content was recorded within the first 20-30 days. From day 60 on, chlorophyll was hardly detectable. Through subsequent feeding on a renewed algal food source a significant increase in the chlorophyll content in foraminifera was noticed. The degradation of chlorophyll in the dark (24 h continuous darkness) during the starving period was much more complex. Chlorophyll was still detected in the cells after 113 days of starving time. Therefore, we hypotheses that the effect of photoinhibition applies to chloroplasts in foraminifera under continuous illumination.


Subject(s)
Foraminifera , Foraminifera/metabolism , Chloroplasts/metabolism , Chlorophyll/metabolism , Light
7.
Geol J (Chichester) ; 58(3): 1042-1068, 2023 Mar.
Article in English | MEDLINE | ID: mdl-38529049

ABSTRACT

This study reports the new discovery of relatively abundant foraminiferal faunas from the upper Serpukhovian-lowermost Bashkirian? of the Ghaleh Formation in the Shahreza region of the Sanandaj-Sirjan Zone, Iran. Four successive assemblages spanning the upper Serpukhovian-lowermost Bashkirian? are proposed: (1) Assemblage with Biseriella minima and Eostaffellina paraprotvae; (2) Assemblage with Bradyina cribrostomata; (3) Assemblage with Parastaffella utkaensa and Plectostaffella spp., (4) Assemblage with Plectostaffella ex gr. varvariensis. The newly discovered foraminiferal assemblages of the Sanandaj-Sirjan Zone have some species in common with assemblages of the Russian Platform, Donets Basin, Urals, and Western Europe. Ikensieformis aff. mirifica, and Eostaffella igoi, and a new species Ikensieformis persiaensis sp. nov. are described. The microfacies analysis of the Ghaleh Formation limestones suggests a moderate to high-energy shallow marine warm environment, more likely of the inner ramp.

8.
Sci Rep ; 12(1): 2750, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35177723

ABSTRACT

Foraminifera are abundant unicellular organisms that play an important role in marine element cycles. A large benthic foraminifer obligatory bearing photosymbionts is Heterostegina depressa. We studied potential impacts of sunscreens available on the market on the activity of photosymbionts on H. depressa by means of pulse-amplitude modulated (PAM) fluorescence microscopy. We included four different sunscreens, with two of them sold as "conventional" and two more stated as "eco-friendly". Further, the impact of pure Ensulizole (phenylbenzimidazole sulfonic acid) was tested, which is a common agent of sunscreens. Foraminifera were incubated at varying concentrations (10, 50 and 200 mgL-1) of different sunscreens and the pure Ensulizole for 14 days. The photosynthetic performance was measured after 1,3, 7 and 14 days. Pure Ensulizole had a strong negative impact on the photobionts, which was reflected by a significant reduction of the areal fluorescence signal. "Eco-friendly" sunscreens affected the health of foraminifera more severely compared to "conventional" ones. We assume that metal nanoparticles like titanium dioxide or zinc oxide of "eco-friendly" sunscreens are causing this impact, because these substances were already classified as toxic for several microorganisms.


Subject(s)
Foraminifera/metabolism , Photosynthesis/drug effects , Sunscreening Agents/pharmacology
9.
Heliyon ; 7(11): e08427, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34849422

ABSTRACT

Foraminifera are unicellular organisms and play a pivotal role in the marine material cycles. Past observations have shown that the species Elphidium excavatum is the most common foraminifera in the Baltic Sea. Feeding experiments showed that the food uptake and thus the turnover of organic matter are influenced by changes of physical parameters (e.g., temperature, salinity). Since many areas of the Baltic Sea are strongly affected by anthropogenic activity and are strongly contaminated by heavy elements from shipping in the past, this study examined the effect of heavy elements pollution on the food uptake of the most common foraminiferal species of the Baltic Sea, E. excavatum which was a subject of several previous studies. Therefore, Baltic Sea seawater was enriched with metals at various levels above normal seawater levels and the uptake of 13C- and 15N-labelled phytodetritus was measured by isotope ratio mass spectrometry. For each combination of metal type, concentration and time point 20 individuals of E. excavatum (three replicates) were fed with the green algae Dunaliella tertiolecta. The effect of dose parameters was measured in a two-way analysis of variance. Significant differences of food uptake were observable at different types and levels of heavy elements in sea water. Even a 557-fold increase in the Pb concentration did not affect food uptake, whereas strong negative effects were found for higher levels of Zn (144 and 1044-fold) and especially for Cu (5.6 and 24.3-fold). In summary it can be stated, that an increase in the heavy elements pollution in the Kiel Fjord will lead to a significant reduction in the turnover of organic matter by foraminifera such as E. excavatum.

10.
Biol Open ; 7(4)2018 Apr 13.
Article in English | MEDLINE | ID: mdl-29540430

ABSTRACT

Ammonia tepida is a common and abundant benthic foraminifer in intertidal mudflats. Benthic foraminifera are primary consumers and detritivores and act as key players in sediment nutrient fluxes. In this study, laboratory feeding experiments using isotope-labeled phytodetritus were carried out with A. tepida collected at the German Wadden Sea, to investigate the response of A. tepida to varying food supply. Feeding mode (single pulse, constant feeding; different incubation temperatures) caused strong variations in cytoplasmic carbon and nitrogen cycling, suggesting generalistic adaptations to variations in food availability. To study the influence of intraspecific size to foraminiferal carbon and nitrogen cycling, three size fractions (125-250 µm, 250-355 µm, >355 µm) of A. tepida specimens were separated. Small individuals showed higher weight specific intake for phytodetritus, especially for phytodetrital nitrogen, highlighting that size distribution within foraminiferal populations is relevant to interpret foraminiferal carbon and nitrogen cycling. These results were used to extrapolate the data to natural populations of living A. tepida in sediment cores, demonstrating the impact of high abundances of small individuals on phytodetritus processing and nutrient cycling. It is estimated that at high abundances of individuals in the 125-250 µm size fraction, Ammonia populations can account for more than 11% of phytodetritus processing in intertidal benthic communities.

11.
Front Microbiol ; 7: 71, 2016.
Article in English | MEDLINE | ID: mdl-26903959

ABSTRACT

Foraminifera are an important faunal element of the benthos in oxygen-depleted settings such as Oxygen Minimum Zones (OMZs) where they can play a relevant role in the processing of phytodetritus. We investigated the uptake of phytodetritus (labeled with (13)C and (15)N) by calcareous foraminifera in the 0-1 cm sediment horizon under different oxygen concentrations within the OMZ in the eastern Arabian Sea. The in situ tracer experiments were carried out along a depth transect on the Indian margin over a period of 4 to 10 days. The uptake of phytodetrital carbon within 4 days by all investigated species shows that phytodetritus is a relevant food source for foraminifera in OMZ sediments. The decrease of total carbon uptake from 540 to 1100 m suggests a higher demand for carbon by species in the low-oxygen core region of the OMZ or less food competition with macrofauna. Especially Uvigerinids showed high uptake of phytodetrital carbon at the lowest oxygenated site. Variation in the ratio of phytodetrital carbon to nitrogen between species and sites indicates that foraminiferal carbon and nitrogen use can be decoupled and different nutritional demands are found between species. Lower ratio of phytodetrital carbon and nitrogen at 540 m could hint for greater demand or storage of food-based nitrogen, ingestion, or hosting of bacteria under almost anoxic conditions. Shifts in the foraminiferal assemblage structure (controlled by oxygen or food availability) and in the presence of other benthic organisms are likely to account for observed changes in the processing of phytodetritus in the different OMZ habitats. Foraminifera dominate the short-term processing of phytodetritus in the OMZ core but are less important in the lower OMZ boundary region of the Indian margin as biological interactions and species distribution of foraminifera change with depth and oxygen levels.

SELECTION OF CITATIONS
SEARCH DETAIL
...