Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nano Lett ; 12(6): 2658-64, 2012 Jun 13.
Article in English | MEDLINE | ID: mdl-22149990

ABSTRACT

We examine the population dynamics of multiple excitons in PbS quantum dots using spectrally resolved ultrafast supercontinuum transient absorption (SC-TA) measurements. We simultaneously probe the first three excitonic transitions. The transient spectra show the presence of bleaching of absorption for the 1S(h)-1S(e) transition, as well as transients associated with the 1P(h)-1P(e) transition. We examine signatures of carrier multiplication (multiple excitons arising from a single absorbed photon) from analysis of the bleaching features in the limit of low absorbed photon numbers (left angle bracket N(abs) right angle bracket ∼ 10(-2)) for pump photon energies from two to four times that of the band gap. The efficiency of multiple-exciton generation is discussed both in terms of the ratio between early- to long-time transient absorption signals and of a broadband global fit to the data. Analysis of the population dynamics shows that bleaching associated with biexciton population is red shifted with respect to the single exciton feature, which is in accordance with a positive binding energy for the biexciton.


Subject(s)
Lead/chemistry , Models, Chemical , Models, Statistical , Quantum Dots , Selenium Compounds/chemistry , Spectrum Analysis/methods , Computer Simulation , Electron Transport , Energy Transfer , Materials Testing
2.
Phys Rev Lett ; 107(15): 157401, 2011 Oct 07.
Article in English | MEDLINE | ID: mdl-22107317

ABSTRACT

We present experimental measurements of the electronic contribution to the Raman spectra of individual metallic single-walled carbon nanotubes (MSWNTs). Photoexcited carriers are inelastically scattered by a continuum of low-energy electron-hole pairs created across the graphenelike linear electronic subbands of the MSWNTs. The optical resonances in MSWNTs give rise to well-defined electronic Raman peaks. This resonant electronic Raman scattering is a unique feature of the electronic structure of these one-dimensional quasimetals.

3.
Science ; 296(5574): 1838-41, 2002 Jun 07.
Article in English | MEDLINE | ID: mdl-12052951

ABSTRACT

The ability of scanning tunneling microscopy to probe the pathways of thermally activated high-barrier surface processes is frequently limited by competing low-barrier processes that can confuse measurement of the true initial and final configuration. We introduce an approach to circumvent this difficulty by driving the surface process with nanosecond laser heating. The method is applied to determine the pathway of recombinative desorption in the H/Si(001) system. The observed configuration of dangling bonds after laser heating reveals that the desorbed hydrogen molecules are not formed on single dimers, but rather from neighboring silicon dimers via an interdimer reaction pathway.

4.
Phys Rev Lett ; 88(4): 046104, 2002 Jan 28.
Article in English | MEDLINE | ID: mdl-11801144

ABSTRACT

Dissociative adsorption of molecular hydrogen on clean Si(001) surfaces has been investigated by means of scanning tunneling microscopy. The dissociated hydrogen atoms are found to occupy Si atoms of adjacent dimers. In addition to this interdimer configuration associated with the adsorption of isolated hydrogen molecules, pairs of adjacent doubly occupied dimers are readily formed. They arise from the enhanced reactivity of partially occupied dimers following the initial H2 adsorption step. The results are considered in light of recent adsorption and desorption measurements.

5.
Phys Rev Lett ; 86(8): 1566-9, 2001 Feb 19.
Article in English | MEDLINE | ID: mdl-11290194

ABSTRACT

A novel type of surface vibrational sum-frequency generation spectroscopy is presented that enables a highly specific measurement of the coupling of molecules on surfaces. With this doubly vibrationally resonant technique, two-dimensional vibrational spectroscopy of molecules on surfaces becomes possible. The technique is demonstrated for the C-O stretch vibration of CO on a ruthenium (001) surface. It allows for the determination of the intermolecular coupling strength of dipole-coupled CO molecules on the surface.

6.
Phys Rev Lett ; 86(2): 340-3, 2001 Jan 08.
Article in English | MEDLINE | ID: mdl-11177826

ABSTRACT

We examine the transport properties and the dynamics of free electrons in n-hexane by means of femtosecond spectroscopy using an ultraviolet pump pulse to create the electrons and a THz electromagnetic pulse as a probe. The complex dielectric response of the photogenerated electrons is determined over a broad range of frequencies, from which we infer the electron scattering time and density through the Drude model. The time evolution of the carrier density reveals nongeminate electron-ion recombination within hundreds of picoseconds at high ion concentration.

7.
Opt Lett ; 26(11): 849-51, 2001 Jun 01.
Article in English | MEDLINE | ID: mdl-18040471

ABSTRACT

We present a theory of the magnetic field enhancement of terahertz (THz) emission from photogenerated carriers in the surface depletion region of a semiconductor. A combination of the Drude-Lorentz model for the carrier dynamics with an appropriate solution of the radiation problem is sufficient to explain the strong B -field enhancement in THz radiation that has been observed experimentally. The effect arises primarily from the increased radiation efficiency of transient currents flowing in the plane of the surface. The model provides quantitative agreement with experiment for the pronounced angular dependence of the enhancement and predicts the correct trend for the enhancement in a variety of materials.

8.
Opt Lett ; 25(6): 426-8, 2000 Mar 15.
Article in English | MEDLINE | ID: mdl-18059901

ABSTRACT

We demonstrate a simple scheme for capturing the temporal waveforms of a freely propagating terahertz electromagnetic transient in a single shot. The method relies on electro-optic sampling in a noncollinear geometry for the terahertz radiation and the visible probe beam, coupled with multichannel detection. The approach provides time resolution that is comparable to that of conventional electro-optic sampling measurements.

9.
Opt Lett ; 24(15): 1059-61, 1999 Aug 01.
Article in English | MEDLINE | ID: mdl-18073940

ABSTRACT

We present a scheme for the determination of the vector nature of an electric field by optical second-harmonic generation. We demonstrate the technique by mapping the two-dimensional electric-field vector of a biased transmission line structure on silicon with a spatial resolution of ~10mum .

10.
Opt Lett ; 23(1): 67-9, 1998 Jan 01.
Article in English | MEDLINE | ID: mdl-18084414

ABSTRACT

We report the application of electric-field-induced optical second-harmonic generation as a new technique for measuring the field of freely propagating terahertz radiation. Using silicon as the nonlinear medium, we demonstrate subpicosecond time resolution and a sampling signal that varies linearly with the terahertz electric field. This approach, which is attractive for centrosymmetric media, permits a significantly broadened class of materials to be exploited for free-space sampling measurements.

11.
Opt Lett ; 23(11): 867-9, 1998 Jun 01.
Article in English | MEDLINE | ID: mdl-18087368

ABSTRACT

We describe the generation of subpicosecond electrical pulses by optical rectification of ultrashort optical pulses. The electrical pulses are generated by the second-order nonlinear response of a LiTaO(3) crystal bonded to a coplanar transmission line. A bipolar temporal waveform with a width of 875 fs was measured after a propagation distance of 175mum . This pulse width was limited by the response time of the photoconductive sampler. We observed both broadening and amplitude reduction in the temporal waveform owing to propagation.

12.
Opt Lett ; 14(21): 1201-3, 1989 Nov 01.
Article in English | MEDLINE | ID: mdl-19759634

ABSTRACT

Diffracted surface second-harmonic radiation emerging in several orders has been observed from a periodically modulated monolayer of adsorbed dye molecules. The molecular grating was produced by laser-induced desorption in the field of two crossed beams. An elementary theory is presented that relates the characteristics of the second-harmonic diffraction pattern to the spatially varying properties of the surface and is applied to infer the adsorbate density profile of the spatially modulated grating. The density profile is compared with the predictions of a model of grating formation based on thermal desorption.

13.
Opt Lett ; 9(8): 359-61, 1984 Aug 01.
Article in English | MEDLINE | ID: mdl-19721598

ABSTRACT

We demonstrate the existence of coherent coupling effects in pump-probe measurements with collinear, copropagating beams, despite the absence of any induced spatial gratings in this geometry. The coherent interaction, which is found to be similar but not identical to that for crossed beams, must be taken into account in analyzing relaxation processes occurring on the time scale of the laser pulse. These coherent effects cannot generally be eliminated by detecting the total change in energy in both the pump and probe beams.

SELECTION OF CITATIONS
SEARCH DETAIL
...