Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neurotoxicology ; 85: 121-132, 2021 07.
Article in English | MEDLINE | ID: mdl-34048864

ABSTRACT

Paraquat (1,1'-dimethyl-4,4'-bipyridinium dichloride; PQ) is a widely used herbicide in Brazilian crops, despite its banishment in many other countries. The present study investigated the effects of repeated dose of PQ on glutamate system, energy metabolism and redox parameters in the hippocampus of prepubertal rats. Twenty-two-day-old rats received daily intraperitoneal injections of PQ (10 mg/Kg) during 5 consecutive days and the effects of the pesticide were assessed 24 h after the last injection. The PQ exposure provoked cytotoxicity associated to decreased cell viability and increased glutamate excitotoxicity, as demonstrated by decreased 14C-glutamate uptake and increased 45Ca2+ uptake. Downregulated glutamine synthetase (GS) activity, further supports disrupted glutamate metabolism compromising the glutamate-glutamine cycle. Downregulated 14C-2-Deoxy-D-glucose indicates energy failure and upregulated lactate dehydrogenase (LDH) suggests the relevance of lactate as energy fuel. Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) upregulation suggest Krebs cycle replenishment and piruvate production. In addition, PQ disturbed the redox status inducing lipid peroxidation, evaluated by increased TBARS and imbalanced antioxidant system. Downregulated glutathione reductase (GR), gamma-glutamyltransferase (GGT), glutathione-S-transferase (GST) and glucose-6-P-dehydrogenase (G6PD) activities together with upregulated superoxide dismutase (SOD) and catalase activities corroborate the oxidative imbalance. The mechanisms underlying PQ-induced neurotoxicity involves the modulation of GSK-3ß, NF-κB and NMDA receptors. These neurochemical and oxidative events observed may contribute to neuroinflammation and neurotoxic effects of PQ on hippocampal cells.


Subject(s)
Energy Metabolism/drug effects , Glutamic Acid/metabolism , Herbicides/toxicity , Hippocampus/metabolism , Paraquat/toxicity , Sexual Maturation/drug effects , Animals , Cell Survival/drug effects , Cell Survival/physiology , Energy Metabolism/physiology , Hippocampus/drug effects , Male , Organ Culture Techniques , Oxidation-Reduction/drug effects , Rats , Rats, Wistar , Sexual Maturation/physiology
2.
Toxicology ; 320: 34-45, 2014 Jun 05.
Article in English | MEDLINE | ID: mdl-24636977

ABSTRACT

Previous studies demonstrate that glyphosate exposure is associated with oxidative damage and neurotoxicity. Therefore, the mechanism of glyphosate-induced neurotoxic effects needs to be determined. The aim of this study was to investigate whether Roundup(®) (a glyphosate-based herbicide) leads to neurotoxicity in hippocampus of immature rats following acute (30min) and chronic (pregnancy and lactation) pesticide exposure. Maternal exposure to pesticide was undertaken by treating dams orally with 1% Roundup(®) (0.38% glyphosate) during pregnancy and lactation (till 15-day-old). Hippocampal slices from 15 day old rats were acutely exposed to Roundup(®) (0.00005-0.1%) during 30min and experiments were carried out to determine whether glyphosate affects (45)Ca(2+) influx and cell viability. Moreover, we investigated the pesticide effects on oxidative stress parameters, (14)C-α-methyl-amino-isobutyric acid ((14)C-MeAIB) accumulation, as well as glutamate uptake, release and metabolism. Results showed that acute exposure to Roundup(®) (30min) increases (45)Ca(2+) influx by activating NMDA receptors and voltage-dependent Ca(2+) channels, leading to oxidative stress and neural cell death. The mechanisms underlying Roundup(®)-induced neurotoxicity also involve the activation of CaMKII and ERK. Moreover, acute exposure to Roundup(®) increased (3)H-glutamate released into the synaptic cleft, decreased GSH content and increased the lipoperoxidation, characterizing excitotoxicity and oxidative damage. We also observed that both acute and chronic exposure to Roundup(®) decreased (3)H-glutamate uptake and metabolism, while induced (45)Ca(2+) uptake and (14)C-MeAIB accumulation in immature rat hippocampus. Taken together, these results demonstrated that Roundup(®) might lead to excessive extracellular glutamate levels and consequently to glutamate excitotoxicity and oxidative stress in rat hippocampus.


Subject(s)
Glycine/analogs & derivatives , Herbicides/toxicity , Hippocampus/drug effects , Neurotoxicity Syndromes/etiology , Prenatal Exposure Delayed Effects/physiopathology , Animals , Calcium/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Glutamic Acid/metabolism , Glycine/administration & dosage , Glycine/toxicity , Herbicides/administration & dosage , Hippocampus/pathology , Lactation/metabolism , Male , Maternal Exposure/adverse effects , Neurotoxicity Syndromes/physiopathology , Oxidative Stress/drug effects , Pregnancy , Rats , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/metabolism , Glyphosate
3.
Free Radic Biol Med ; 65: 335-346, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23820267

ABSTRACT

Glyphosate is the primary active constituent of the commercial pesticide Roundup. The present results show that acute Roundup exposure at low doses (36 ppm, 0.036 g/L) for 30 min induces oxidative stress and activates multiple stress-response pathways leading to Sertoli cell death in prepubertal rat testis. The pesticide increased intracellular Ca(2+) concentration by opening L-type voltage-dependent Ca(2+) channels as well as endoplasmic reticulum IP3 and ryanodine receptors, leading to Ca(2+) overload within the cells, which set off oxidative stress and necrotic cell death. Similarly, 30 min incubation of testis with glyphosate alone (36 ppm) also increased (45)Ca(2+) uptake. These events were prevented by the antioxidants Trolox and ascorbic acid. Activated protein kinase C, phosphatidylinositol 3-kinase, and the mitogen-activated protein kinases such as ERK1/2 and p38MAPK play a role in eliciting Ca(2+) influx and cell death. Roundup decreased the levels of reduced glutathione (GSH) and increased the amounts of thiobarbituric acid-reactive species (TBARS) and protein carbonyls. Also, exposure to glyphosate-Roundup stimulated the activity of glutathione peroxidase, glutathione reductase, glutathione S-transferase, γ-glutamyltransferase, catalase, superoxide dismutase, and glucose-6-phosphate dehydrogenase, supporting downregulated GSH levels. Glyphosate has been described as an endocrine disruptor affecting the male reproductive system; however, the molecular basis of its toxicity remains to be clarified. We propose that Roundup toxicity, implicated in Ca(2+) overload, cell signaling misregulation, stress response of the endoplasmic reticulum, and/or depleted antioxidant defenses, could contribute to Sertoli cell disruption in spermatogenesis that could have an impact on male fertility.


Subject(s)
Glycine/analogs & derivatives , Herbicides/toxicity , Sertoli Cells/drug effects , Testis/drug effects , Animals , Blotting, Western , Calcium/metabolism , Glycine/toxicity , Male , Necrosis/chemically induced , Oxidative Stress/physiology , Rats , Rats, Wistar , Sertoli Cells/pathology , Testis/pathology , Glyphosate
SELECTION OF CITATIONS
SEARCH DETAIL
...